●参与对COVID-19疫苗接种推出的监视,包括现场访问,识别与利益相关者的问题,解决方案和优先行动。●提供支持以实现数字工具和T4D策略进行实时监控。●确定合作伙伴,以协作和支持管理当地合作伙伴,例如非政府组织(NGOS),涉及疫苗交付支持活动,包括风险交流和社区参与(RCCE),监测,社区反馈,动员和外展群体。●提供与数据管理,分析,监测,评估和报告有关的技术支持,以供PNG疫苗接种,高风险群落数量高,偏远地区通常覆盖常规免疫的范围较低。这包括向内部和捐助者报告提供输入。●抵达和清理前在国际机场检查疫苗。●及时分配疫苗和物流,具有良好的冷链实践和温度要求。
修订的历史记录1。根据BOM -52/2018批准[第3.10.1号决议。],日期为2018年1月13日。2。根据BOM-53/2018批准[第4.4.4.2号决议。],日期为2018年5月19日。3。在BOM -53/2018中修订[第4.5.1号决议。 ],日期为2018年5月19日。 4。 在BOM -55/2018中修改了[第4.13号决议],日期为2018年11月27日。 5。 在BOM中修改-57/2019 [第3.1.4.2号决议],日期为26/04/2019。 6。 在BOM中修改了-59/2019 [第3.2.3.3.8号决议。 ],日期为2019年11月11日。 7。 在BOM-63/2021中修订[第4.3.1.2号决议。 ],[决议号4.3.1.3。] 日期为17/02/2021。 8。 在AC-41/2021中进行了修订[决议号 3.5];日期为27/08/2021。 9。 AC-42/2022中的修订[决议号 4.1],[决议号 10.4.i&ii]。在BOM -53/2018中修订[第4.5.1号决议。],日期为2018年5月19日。4。在BOM -55/2018中修改了[第4.13号决议],日期为2018年11月27日。5。在BOM中修改-57/2019 [第3.1.4.2号决议],日期为26/04/2019。6。在BOM中修改了-59/2019 [第3.2.3.3.8号决议。],日期为2019年11月11日。7。在BOM-63/2021中修订[第4.3.1.2号决议。],[决议号4.3.1.3。]日期为17/02/2021。8。在AC-41/2021中进行了修订[决议号3.5];日期为27/08/2021。9。AC-42/2022中的修订[决议号4.1],[决议号10.4.i&ii]。
糖尿病会影响全球4.25亿个人,预计在未来20年中,数字将增加到6亿人(1)。在1型糖尿病(T1D)中,患者经历胰岛素产生降低引起的胰岛素缺乏症,而在2型糖尿病(T2D)中,患者经历了胰岛素抵抗(IR),通常与肥胖有关(2)。导致IR发展的主要因素是增加氧化应激,高血糖和脂质水平升高(3)。尽管有助于控制血糖水平的疗法进步,但心血管并发症仍然是该人群发病率和死亡率的主要原因(2、4、5)。在心脏中,IR会导致钙处理,线粒体功能障碍和代谢不足的失调,导致一系列病理,其中包括心肌 - 心脏情感功能障碍,舒张性障碍功能障碍,心肌细胞死亡,心肌死亡和内膜骨化(6,7,7,7,7,7,7)。与IR相关的血管事件通常与高血压和增强的血栓形成环境有关(8、9)。虽然阻塞性血凝块可以导致心肌梗塞,脑血管事件或关键的肢体缺血,并且由于血小板与止血蛋白之间的复杂相互作用而发生(10)。在这种高度异质的人群中,发展此类并发症的风险是可变的,并取决于一系列因素,包括年龄,糖尿病持续时间,血糖控制和IR。在内分泌学领域的这一研究主题中,我们介绍了8篇文章,旨在探索IR与心血管健康之间的关系。他等人。动脉硬化是糖尿病的众所周知的并发症(11)。检查了放射线间脂肪组织(IMAT)分析是否可以用作指示T2D患者动脉硬化的诊断措施。总共包括549例新诊断的T2D患者,并使用颈动脉斑块负担来表明动脉粥样硬化。构建了三个模型以评估动脉粥样硬化的风险:临床模型,一个放射组学模型(基于胸部CT图像的IMAT分析)和临床放射线组合组合模型(一种整合临床放射学特征的模型)。使用曲线和DELONG测试下的区域比较了这三个模型的性能。临床 - 放射线组合模型和放射线学模型表明,在表明动脉粥样硬化方面的性能更好。作者
compasse代表了与黑暗和放射奎特天空的保护,外太空的安全和可持续使用以及相关问题的利益,并使AAS成员成为保护美国天文学的有效拥护者。compasse.aas.org
糖尿病性心肌病(DCM)是糖尿病的常见并发症之一,作为特定的心肌病,在心脏的结构和功能上具有异常。随着糖尿病患病率的增加,DCM在全球范围内具有高发病率和死亡率。最近的研究发现,作为一种程序性细胞死亡,伴有炎症反应,加剧了DCM的生长和起源。这些研究为探索DCM的潜在处理提供了理论基础。Therefore, this review aims to summarise the possible mechanisms by which pyroptosis promotes the development of DCM as well as the relevant studies targeting pyroptosis for the possible treatment of DCM, focusing on the molecular mechanisms of NLRP3 in fl ammasome-mediated pyroptosis, different cellular pyroptosis pathways associated with DCM, the effects of pyroptosis occurring in different cells on DCM和针对NLRP3炎症/热胞菌的相关药物用于治疗DCM。本评论可能为开发DCM的治疗剂提供了新的视角和基础。
肥厚性心肌病(HCM)是由编码结构性肉类蛋白的基因中的常染色体示例突变引起的,是最常见的遗传性心脏病。HCM与心肌肥大,纤维化和心室功能障碍有关。缺氧诱导的转录因子1α(HIF-1α)是细胞缺氧反应的中心调节剂,与HCM相关。但其确切的作用仍有待阐明。因此,在已建立的α-MHC 719/+ HCM小鼠模型中研究了心肌细胞特异性HIF-1A敲除(CHIF1AKO)的影响,该模型表现出人类HCM的经典特征。结果表明,HIF-1α蛋白和HIF靶标在α-MHC 719/+小鼠的左心室组织中上调。心肌细胞特异性的HIF-1A的特异性消除使疾病表型钝化,这是左心室壁厚减小,心肌纤维化降低,SRX/DRX状态和ROS产生的降低所证明的。chif1ako在α-MHC 719/+小鼠的整个转录组和蛋白质组学分析中诱导了肥厚和纤维化的左心室重塑信号的归一化。来自早期HCM患者的血清样品的蛋白质组学显示HIF的显着调节。 这些结果表明HIF信号与小鼠和人类HCM发病机理有关。 HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。 靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。来自早期HCM患者的血清样品的蛋白质组学显示HIF的显着调节。这些结果表明HIF信号与小鼠和人类HCM发病机理有关。HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。 靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。
全面贯彻党的十九大和十九届二中、三中、四中全会精神,落实党中央、国务院关于新一代人工智能发展的决策部署,坚持市场驱动与政府引导相结合,按照“统筹规划、分类施策、市场主导、急用先行、跨界融合、协同推进、自主创新、开放协作”的原则,立足国内需求,放眼国际,建立新一代人工智能国家标准体系,加强标准顶层设计和宏观指导。加快创新技术与应用转化为标准,加强标准实施和监督,推动创新成果与产业深度融合。注重对智能制造、工业互联网、机器人、车联网等相关标准体系的统筹和支撑。深化人工智能标准国际交流合作,注重国际国内标准协同,充分发挥标准对人工智能发展的支撑引领作用,保障高质量发展。
朱利安·科尼格 1,2 |比尔吉特·阿布勒 3 |英格丽德·阿加茨 4,5,6 |托比约恩·阿克施泰特 7,8 |奥勒·安德烈亚斯森 4,9 |米娅·安东尼 10 |卡尔·尤尔根·贝尔 11 |卡佳·伯茨 12 |丽贝卡·C·布朗 13 |罗穆亚尔德·布伦纳 14 |卢卡嘉年华 15 |雨果·D·克里奇利 16 |凯瑟琳·R·卡伦 17 | Geus 18 的 Eco JC |十字架的费利伯特 11 |伊莎贝尔·吉奥贝克 19 |马克·D·费格 3 |哈坎·菲舍尔 20 |赫塔弗洛尔 21 |迈克尔·盖布勒 22,23 |彼得·J·吉安罗斯 24 | Melita J. Giummarra 25.26 |史蒂文·G·格林宁 27 |西蒙·根德尔曼 28 |詹姆斯·AJ·希瑟斯 29 |萨宾·J·赫珀茨 12 | Mandy X. 至 30 |塞巴斯蒂安·延奇克 31,32 |迈克尔·凯斯 1.33 |托拜厄斯·考夫曼 4.9 | Bonnie Klimes-Dougan 34 |斯特凡·科尔施 31.35 |玛琳·克劳奇 12 |丹尼斯·库姆拉尔 22.23 | Femke Lamers 30 |李泰浩 36 |马茨·亚历山大 7.8 |凤林10 |马丁洛策 37 |埃琳娜·马科瓦茨 38.39 |马泰奥·曼奇尼 40.41 |福尔克·曼克 12 | Kristoffer NT 价格 20,42 |斯蒂芬·B·马努克 24 |玛拉·马瑟 43 |弗朗西斯·米滕 44 |闵正元 45 |布莱恩·穆勒 17 |薇拉·穆恩奇 13 |弗劳克·尼斯 21.46 |林雅 45 |古斯塔夫·尼尔松内 8,20 |丹妮拉·奥尔多涅斯·阿库纳 31 |贝尔热·奥斯内斯 35.47 |克里斯蒂娜·奥塔维亚尼 39.48 |布伦达 WJH 彭尼克斯 30 |艾莉森·庞齐奥 45 |戈文达·R·普德尔 49 |詹尼斯·雷内尔特 22 |平忍10 |榊道子 50.51 |安迪舒曼 11 |林索伦森 35 |卡尔斯滕·施佩希特 35.52 |乔安娜·施特劳布 13 |桑德拉·塔姆 8,20,53 |米歇尔泰国 17 |朱利安·F·塞耶 54 |本杰明·乌巴尼 55 |丹尼斯·范德米 18 |劳拉·S·范维尔岑 56.57.58 |卡洛斯·文图拉-博特 59 |阿诺·维尔林格 22,23 |大卫·沃森 60 |魏鲁清 61 |朱莉娅·温特 59 |梅琳达·韦斯特伦德·施莱纳 34 |拉尔斯·T·韦斯特莱 4,9,62 |马蒂亚斯·威玛 59.63 |托拜厄斯·温克尔曼 21 |吴国荣 61 |刘贤珠 45 |丹尼尔·S·金塔纳 4.9
本文旨在提出一种配备储能装置的电网形成转换器与水力发电机之间的协调控制策略,以促进未来电力系统中转换器的频率支持。这样,就可以利用转换器系统的快速动态特性,同时最大限度地减少与转换器系统相关的储能要求。电网形成转换器频率控制器的拟议调整标准有助于转换器系统与水力发电机之间的自然协调。将所提出的控制策略的有效性与文献中现有的传统下垂方法进行了比较。最后,使用 PSCAD 中的详细时域仿真模型验证了分析结果。