本研究描述了一个自动化实验平台的开发,该平台旨在在Slug-Flow millireactors中使用使用的食用油(UCO)连续环氧化。该系统将UCOS转化为高价值的第二代橄榄石,采用加强过程,确保可重复性,高收率和增强的生产率。使用H 2 O 2作为氧化剂,Procetacic酸作为氧载体,通过Prilezhaev反应进行环氧化,而H 2 SO 4作为催化剂。不同的植物油,以评估不饱和含量和油性能对工艺性能的影响,发现粘度对反应器内的流体动力模式具有很高的影响,并且需要特定的工作条件与每个原料一起到达slug流。然后,使用UCO的初步实验产生了合适的工作条件,以确保适当的slug流动状态。发现,UCO中的高含量化合物对反应器的流体动力学产生了显着影响,因为这些成分会诱导与水相的coa病变。因此,UCO中的极性成分和水分的水平可以表明其在slug-flow反应器中进一步的环氧化的适用性以及预处理的必要性。随后,进行了实验性的单纯进化优化,以验证对黄氧烷基团> 80%的选择性,转化率高达86%,产生高达73%。最佳工作条件为77.4°C,H 2 O 2与油比为0.84:1,酸度与油比为0.32:1,停留时间为22.7分钟。在这些条件下,达到了82%的转化率,选择性为86%,生产率为0.75 kg o·m −3Åmin -min -1,并且相应的环氧化UCO的氧气氧含量为4.02 wt%。
摘要 简介 微生物对抗菌药物的耐药性不断升级,对公共健康构成了重大威胁。使用生物标志物(最显著的是降钙素原 (PCT) 和 C 反应蛋白 (CRP))指导抗菌治疗的策略有望安全地减少患者的抗生素暴露。虽然 CRP 研究较少,但与 PCT 相比,它具有成本更低、可用性更广等优势。 方法与分析 这项随机临床试验旨在评估一种针对非危重成人患者的新算法。该算法结合了关键的临床变量和 CRP 行为。它将通过移动应用程序作为数字临床决策支持系统应用。主要目标是评估该算法与基于现行指南的标准治疗相比在缩短治疗时间方面的有效性,同时通过监测不良事件的发生来确保患者安全。 伦理与传播 只有在阅读知情同意书后同意参加研究的患者才会被纳入研究。该项目已提交米纳斯吉拉斯联邦大学 (COEP-UFMG) 研究伦理委员会审议并获得批准(批准号:5.905.290)。预计将收集 200 名患者的临床和实验室数据,这些数据来自电子病历和实验室系统,同时存储血清样本以备将来分析。数据将使用研究电子数据采集平台保存,血清样本将存储在 UFMG 的受监管生物库中。访问将通过凭证进行控制,并在科学出版期间进行隐私保护和匿名化共享。试验注册号 此试验已在 ClinicalTrials.gov ( NCT05841875 ) 上注册,最后更新时间为 2024 年 12 月 5 日 12:49。
Seyyed Mohsen Beladi-Mousavi、Gerardo Salinas、Nikolas Antonatos、Vlastimil Mazanek、Patrick Garrigue 等人。通过独立 2D 反应层中的双极电化学微调还原氧化石墨烯的功能。Carbon,2022 年,191,第 439-447 页。�10.1016/j.carbon.2022.02.010�。�hal-03635847�
在同一反应堆中进行多步反应的两个或多个催化剂同时进行串联催化,可以使(BIO)药物和纤维制造能够变得更加可持续。在此报告,在合成的共价有机框架胶囊中,金属纳米颗粒和生物催化系统的共晶型化合物COFCAP-2的作用像是人工细胞,因为该细胞在300-400 nm cavities/egress/egress/egress/egress中被捕获在300-400 nm nm cavities in cacy/egress中。2 nm窗口。首先将COFCAP-2反应器涂在电极表面上,然后用Dinitrogen作为原料来制备十一例同期胺。胺在水中的环境条件下以> 99%的对映体过量量制备,包括药物中间体和活性药物成分。重要的是,COFCAP-2系统通过保留性能进行了15次回收,解决了酶的相对不稳定性和较差的回收能力,这阻碍了其广泛的实施,从而有效,低废物的化学物质和(生物)药物。
气候变化增加了了解物理气候风险的需求,例如热浪的频率和严重程度的增加,以进行知情的财务决策。这项研究调查了极端热浪对欧洲和美国股票回报的财务影响。因此,该研究通过整合气候科学和金融的方法来结合气象和股票市场数据。作者使用气象数据来确定自1979年以来在欧洲和美国的五个最强的热浪,以及活动研究分析,以捕获其对环境绩效水平不同的公司股票价格的影响。这些发现表明,21世纪的热浪频率显着增加,反映了全球变暖的趋势,并且欧洲的热浪通常比美国的强度更高,持续时间更高。这项研究提供了证据表明,极端热浪降低了两个地区的库存价值,投资组合下降了3.1%。但是,投资者反应存在明显的跨国差异。与过去的进一步的热浪相比,在美国列出的股票似乎更受热浪的影响,而对欧洲股票价格的影响与事件强度和持续时间更加紧密相关。 仅针对美国样本,该分析揭示了高公司环境绩效对热风险的缓解作用。股票似乎更受热浪的影响,而对欧洲股票价格的影响与事件强度和持续时间更加紧密相关。仅针对美国样本,该分析揭示了高公司环境绩效对热风险的缓解作用。这项研究介绍了一种创新的跨学科方法论,将气象精度与财务分析合并,以提供对与气候相关风险的更深入的见解。
图S8。fesem图像(c)c,(c)c,(d)o,(e)p,(e)p,(f)ag,(g)v,(g)v,(h)W。fesem rpom-cv3 at(i)较低和(i)较低和(j)较高的eDx元素(e edx元素)(k)(k)(k)o, (o)V,(P)W。
亲爱的Heer van Beuningen,亲爱的Heer van der Steen,在这封信中,我们将向您发送对定居草案变更草案的磋商反应,而在环境计划中将Edna作为公认的措施包括在环境方案中。为此,我们与来自不同市政当局的(城市)生态学家进行了交谈,并研究了相关文件。首先,我们要强调的是,市政当局非常高兴,政府探讨了在绝缘后探索物种保护的替代物种,并调查了其可靠性。研究对Edna的附加值表示乐观,以此作为排除腔墙中蝙蝠的存在的帮助。这是SMP和NVI旁边的乐器。edna提供了在自然日历之外隔离的机会,因此对于保持能源费用负担得起和能源过渡的进度至关重要。在Spuk nip lai的情况下,市政当局获得了手段,以减轻所有者被占用的房屋中的弱势居民,并通过隔热材料进行补贴和采购措施。但是,在绝缘后的物种保护问题会导致延迟。因此,我们理解并分享了可以尽快应用Edna的愿望。我们也有许多担忧和关注点,我们很乐意与您分享。验证研究提供了注意点以提高可靠性,验证研究表明埃德娜是追踪物种的有前途的方法。根据他们的说法,如果您想整整一年的第2轮使用Edna,这是必要的。我们还提请人们注意这些研究的呼吁,以研究DNA的分解时间和可以使用Edna发现的物种。研究人员指出,尚不清楚DNA将留在居住地多长时间,而EDNA 1可以检测到多长时间。我们还在报告中阅读了进一步的研究
传统上,关于反应扩散和趋化系统模式形成的研究集中在渐近稳定性上,以解释模式的出现。在[11]中,作者分析了线性化系统的渐近趋化性扩散不稳定产生的模式的现象学,并研究了趋化项的不同作用:增强已经存在的图林不稳定或促进稳定同质平衡模型的不稳定发作时,是在增强稳定的不稳定的过程中。在该论文中,作者研究了雅各布在没有扩散的情况下的初始瞬态不稳定(如其反应性所检测到)是否仍然是线性化系统渐近不稳定性的必要条件,例如相应的纯扩散模型。
尽管可再生能源在电力部门的份额正在稳步增长,但在供热部门的份额却停滞不前,尽管在柏林,几乎一半的二氧化碳排放是由供热部门造成的。高温含水层热能存储 (HT-ATES) 能够在地下存储大量能源,同时在地面上占用的空间很小,因此特别适合用作城市地区的存储技术,因此有助于减少二氧化碳排放。然而,含水层孔隙的堵塞会降低渗透性,腐蚀和微量元素的流动可能是 HT-ATES 的不良影响。在这里,作为两项柏林 ATES 研究的一部分,对三叠纪石灰岩和侏罗纪砂岩进行了研究,目的是 (a) 通过地球化学建模模拟 HT-ATES 操作对碳酸盐含水层的影响,(b) 通过使用手持式 XRF 进行系统元素分析来识别柏林阿德勒斯霍夫新钻探勘探井的反应矿物相,以及 (c) 通过在高温下进行批量实验来估计动员过程。
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和
