本研究提出了一种新的神经自适应技术概念,即双被动-反应脑机接口 (BCI),可实现人与机器之间的双向交互。我们在逼真的飞行模拟器中实现了这样一个系统,使用 NextMind 分类算法和框架来解码飞行员的意图(反应性 BCI)并推断他们的注意力水平(被动 BCI)。12 名飞行员使用反应性 BCI 执行检查单以及由被动 BCI 监督的防撞雷达监控任务。当后者检测到飞行员没有遇到即将到来的碰撞时,它会模拟自动避让动作。当仅执行检查单任务时,反应性 BCI 的分类准确率达到 100%,平均反应时间为 1.6 秒。当飞行员还必须驾驶飞机并监控防撞雷达时,准确率高达 98.5%,平均反应时间为 2.5 秒。被动 BCI 的 F 1 − 得分为 0.94。首次演示展示了双 BCI 改善人机协作的潜力,可应用于各种应用。
BP 在许多领域都具有广泛的应用,如耐腐蚀和耐热涂层 [4,5]、光催化剂和电催化剂 [6,7],以及热管理 [1] 和极紫外光学应用。 [8] 最近,BP 被认为是一种潜在的 p 型透明导电材料 (TCM)。 [9] 这是一个特别有趣的前景,因为在光学透明材料中获得高 p 型电导率仍然是一个尚未解决的挑战。 [10,11] 与其他 p 型 TCM 候选材料不同,多位作者报道了 BP 中的双极掺杂。 [3,5,9,12,13] 因此,BP 可能是具有 p 型和 n 型掺杂能力的透明材料的独特例子。BP 结晶于具有四面体配位的金刚石衍生的闪锌矿结构中。由于B和P之间的电负性差异很小,BP是共价固体,其能带结构与金刚石结构中的Si和C的能带结构非常相似。主要区别在于BP的基本间接带隙大小适中(≈2.0 eV)[14–16],这主要是由于键长适中。虽然该带隙对应于可见光,但BP的直接带隙要宽得多,位于紫外区(≈4.3 eV)。[15–17]预计BP在室温下的间接跃迁很弱[15],这是使BP薄膜足够透明以用于许多TCM应用的关键因素。例如,根据包括电子-声子耦合在内的第一性原理计算,100nm厚的BP膜预计会吸收微不足道的红黄光和不到10%的紫光。 [15] 就电学性质而言,BP 具有由 p 轨道产生的高度分散的价带,从而确保较低的空穴有效质量(0.35 me)。[9] 与金刚石不同,BP 的价带顶位于相对于真空能级相对较浅的能量处。浅而分散的价带通常与高 p 型掺杂性相关,因为更容易形成未补偿的浅受体缺陷。[18,19]
2003 年 8 月纽约大停电后,审查停电原因的美加联合工作组发现“无功功率不足是停电的一个问题”。5 主席 Pat Wood 召集了一个工作组来制定“高效可靠的无功功率供应和消耗原则”,最终 FERC 工作人员撰写了一份报告,概述了无功功率供应和政策的现状以及改革建议。6 2010 年,FERC 工作人员发布了一份关于有组织的双边批发电力市场中无功功率补偿状况的报告。7 报告发现,存在各种各样的补偿方法,从将无功功率视为无补偿服务到在关税中固定规定的费率,再到所谓的 AEP 方法。8 根据在关税中固定规定费率的补偿方法,发电机的补偿费率与发电设施的具体特征无关。相比之下,AEP 方法考虑了设施的具体特征,下文将对此进行更详细的解释。
缩略语 AB 咨询机构 ABs 咨询机构 CBD 生物多样性公约 CITES 濒危物种贸易公约 CMS 迁徙物种公约 COM 委员会会议 CS 民间社会 DSOCR 将一处遗产从濒危世界遗产名单中移除的期望保护状态 DL 濒危世界遗产名单 EIA 环境影响评估 HIA 遗产影响评估 ICCROM 国际文化财产保护与修复研究中心 ICOMOS 国际古迹遗址理事会 IUCN 国际自然保护联盟 NGO 非政府组织 OG 业务指南 OUV 突出普遍价值 PR 定期报告 RAMSAR 国际重要湿地公约 RM 反应性监测 RoP 议事规则 RT 审查小组 SD 可持续发展 SM 遗址管理者 SMF 遗址管理者论坛 SOC 保护状况 SOUV 突出普遍价值声明 SP 缔约国/缔约国 UNESCO 联合国教育、科学及文化组织 WCPA 世界保护自然资源委员会区域(IUCN,国际自然保护联盟) WH 世界遗产 WH 委员会 - 世界遗产委员会 WH 名录 世界遗产名录 WHC 世界遗产中心
方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H方案1:(a)Aptes,Phme,50°C,20 h(b)pybop,dipea,2,dmf,r.t.,18 h; (c)哌啶/DMF(1:3),R.T.,30分钟,然后DCM/TFA(2:1); (d)丙烯酸甲酯,etoH,40°C,5 h; (E)乙二胺,EtOH,45°C,5 h; (f)丙烯酸甲酯,etoH,40°C,5 h; (g)乙二胺,etoH,45°C,5 h(5b); (H)丙烯酸甲酯,EtOH,40°C,24 h; (i)NH 2 -PEG,ETOH,40°C,48 H
我们的全球业务意味着我们已经拥有应用和开发实验室(具备技术服务能力),以及全球生产能力和知名的客户服务。我们也是高性能涂料和其他独特服装产品的专业生产商。与路博润的合作简化了复杂的全球供应链。
抽象目的是肥胖和高血压尚不清楚高敏性C反应蛋白(HS-CRP)和入射糖尿病之间观察到的关联的程度。这项研究旨在调查HS-CRP与挪威一般人群样本中糖尿病的关联。设计了一项研究队列研究,该研究使用Tromsø研究的两项基于人群的调查:第六次调查Tromsø6(2007-2008)作为基线和第七次调查Tromsø7(2015-2016)在随访中。设定挪威的特罗姆斯市,这个国家的老年人比例越来越高,超重,肥胖和高血压的流行率很高。参与者8067名没有糖尿病的男性和男性,年龄30-87岁,在基线Tromsø6时,他们随后也参加了Tromsø7。是由逻辑回归建模的,与基线HS-CRP相关联,分为三个刻度或连续性的风险因素,并将其分为c.高血压。 通过在完全调整的模型中添加相互作用项来评估性别,体重指数(BMI),高血压或腹部肥胖的相互作用。 结果7年后有320(4.0%)糖尿病病例。 没有证据表明HS-CRP与性别,高血压,BMI或腹部肥胖之间相互作用。 提出的HS-CRP的结论与挪威成人人群样本中的未来糖尿病发展有关。是由逻辑回归建模的,与基线HS-CRP相关联,分为三个刻度或连续性的风险因素,并将其分为c.高血压。通过在完全调整的模型中添加相互作用项来评估性别,体重指数(BMI),高血压或腹部肥胖的相互作用。结果7年后有320(4.0%)糖尿病病例。没有证据表明HS-CRP与性别,高血压,BMI或腹部肥胖之间相互作用。提出的HS-CRP的结论与挪威成人人群样本中的未来糖尿病发展有关。在包括肥胖和高血压在内的多变量调整后,最高HS-CRP三位一体3中的个体患糖尿病的几率高73%(OR 1.73; P = 0.004; 95%CI 1.20至2.49),而第三次较低的人比最低或每1.2%的人(或1.28)(或1.28)(或1.28; 1.28; 1.09至1.50)。肥胖或高血压无法完全解释CRP糖尿病的关联。
摘要:硼氢化镁(Mg(BH 4 ) 2 )具有较高的氢重量/体积容量和脱氢可逆性,是一种很有前途的材料基储氢材料。目前,缓慢的脱氢动力学和中间体聚硼烷的形成阻碍了它在清洁能源技术中的应用。本研究介绍了一种改变 Mg(BH 4 ) 2 物理化学性质的新方法,该方法涉及在气相中添加反应性分子。该过程使得研究一类用于材料基储氢的新型添加剂分子成为可能。研究了四种具有不同亲电性程度的分子(BBr 3 、Al 2 (CH 3 ) 6 、TiCl 4 和 N 2 H 4 )的影响,以推断如何利用化学反应性来调节添加剂 -Mg(BH 4 ) 2 相互作用并优化低温下氢气的释放。控制添加剂与 Mg(BH 4 ) 2 的接触量可防止 γ -Mg(BH 4 ) 2 晶体结构退化和氢容量损失。三甲基铝对 Mg(BH 4 ) 2 的影响最为显著,可保持 Mg(BH 4 ) 2 理论氢含量的 97%,并在 115 °C 时释放氢。这些结果有力地证明了该方法对控制 Mg(BH 4 ) 2 性能的有效性,并为基于添加剂的储氢材料改性提供了一条新途径。关键词:硼氢化镁、储氢、电解质、添加剂、气相化学、同步辐射■ 引言
该团队已经开发出一种步行控制方案,并在之前的人形机器人 HRP-2 上成功测试,验证了强大的步行模式生成器,该生成器速度足够快,可以进行实时计算,并能够自动定位其脚步(应用示例见 [Stasse et al., 2009] 和 [Ramirez-Alpizar et al., 2016])。然而,在新的 Pyr`ene 机器人上,由于比 HRP-2 和其系列的第一个原型(Talos 模型)更重,臀部灵活性等各种技术问题使其在当前的步行模式和控制方案下行走不稳定。因此,已经实施了稳定器并进行了部分测试。实习旨在通过研究稳定器和步行模式生成器来改进控制方案的当前状态,包括实时验证控制以允许机器人进行远程操作。
免责声明该项目由美国能源部国家能源技术实验室资助,部分是通过现场支持合同资助的。美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。