重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。 “通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。 Commun。,2020,56,8762-8765。Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。“通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。Commun。,2020,56,8762-8765。
1 神经外科系,神经科学、心理学、药理学和儿童健康系(NEUROFARBA)Careggi 大学医院,50139 佛罗伦萨,意大利;muscasgi@aou-careggi.toscana.it(GM);alessandro.dellapuppa@unifi.it(ADP)2 神经外科系,苏黎世大学医院,苏黎世大学,8091 苏黎世,瑞士;bas.vanniftrik@usz.ch(CHBvN);martina.seboek@usz.ch(MS);luca.regli@usz.ch(LR)3 临床神经科学中心,苏黎世大学医院,8091 苏黎世,瑞士;katharina.seystahl@usz.ch(KS);michael.weller@usz.ch(MW); marco.piccirelli@usz.ch (MP) 4 苏黎世大学医院神经内科,苏黎世大学,8091 苏黎世,瑞士 5 苏黎世大学医院放射肿瘤科,苏黎世大学,8091 苏黎世,瑞士;nicolaus.andratschke@usz.ch (NA);michelleleanne.brown@usz.ch (MB) 6 苏黎世大学医院神经放射科,苏黎世大学,8091 苏黎世,瑞士 * 通讯地址:jorn.fierstra@usz.ch;电话:+41-44-255-3169;传真:+41-44-255-2663
其他声明:是的,存在潜在的竞争利益。WVB担任Novo Nordisk的发言人。SG曾是Cerveau Technologies的科学顾问。GT-B和HCK是Johnson和Johnson Innovative Medicine的员工,并从其母公司Johnson&Johnson获得薪水和股票。nja在莉莉(Lilly)和昆特利(Quanterix)赞助的座谈会上进行了讲座。HZ has served on the scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZPath, Amylyx, Annexon, Apellis, Artery Therapeutics, AZTherapies, Cognito Therapeutics, CogRx, Denali, Eisai, LabCorp, Merry Life, Nervgen, Novo Nordisk, Optoceutics, Passage Bio,Pinteon Therapeutics,Prothena,Red Abbey Labs,Remynd,Roche,Samumed,Samumed,Siemens Healthineers,hearthers,Triplet Therapeutics and Wave在Alzecure,Alzecure,Biogen,Biogen,Biogen,Biogen,Biogen,Cellectricon,Fuujirebio,Novilly,Libiolly,Libioll,Linork和Rocheer and Rooche的座谈会上发表了讲座。 Gothenburg AB(BBS),这是GU Ventures孵化器计划的一部分(外部提交的工作)。kb曾担任ABBVIE,AC IMMUNE,ALZPATH,ARIBIO,BIOANCIC,BIOGON,BIOGEN,EISAI,LILLY,MOLEAC PTE的顾问和咨询委员会。erz在下一家创新治疗学的科学顾问委员会任职。所有其他作者都声明他们没有竞争利益。Ltd,Neurimmune,Novartis,Ono Pharma,Prothena,Roche Diagnostics和Siemens Helthineers;曾在朱利叶斯临床和诺华的数据监测委员会任职;已经进行了讲座,生产教育材料并参加了有关AC免疫,Biogen,Celdara Medical,Eisai和Roche诊断的教育计划;并且是哥德堡AB(BBS)的脑生物标志物解决方案的联合创始人,该解决方案是本文介绍的工作之外的GU Ventures孵化器计划的一部分。
脑血管控制及其与其他生理系统的整合在有效维持脑功能稳态方面发挥着关键作用。维持、恢复和促进这种平衡是脑康复和干预计划的首要目标之一。脑血管反应性 (CVR) 是脑血管储备的指标,在脑血流的化学调节中起着重要作用。改善血管反应性和脑血流是脑康复的重要因素,有助于实现预期的认知和功能结果。人们普遍认为,CVR 在衰老、高血压和脑血管疾病以及神经退行性综合征中受损。然而,许多生理因素都会影响 CVR,因此需要全面了解其潜在机制。我们目前对哪种康复方法可以改善 CVR 以及这些信息如何为患者的预后和诊断提供信息知之甚少。实施有针对性的康复方案将是阐明此类方案是否可以调节 CVR 的第一步,在此过程中可能有助于提高我们对潜在血管病理生理学的理解。因此,MRI 提供的高空间分辨率以及全脑覆盖为 CVR MRI 令人兴奋的最新发展打开了大门。然而,目前存在一些挑战,阻碍了其作为治疗计划和指导中有效诊断和预后工具的潜力。了解这些知识空白最终将有助于更深入地了解脑血管生理学及其在脑功能和康复中的作用。根据我们小组过去和正在进行的神经康复研究的经验教训,我们系统地回顾了导致衰老和疾病中 CVR 受损的生理机制,以及 CVR 成像及其在脑康复背景下的进一步发展如何为临床环境增加价值。
研究文章 | 系统/电路 一种连接恒河猴显着性检测和运动反应性的皮质机制 https://doi.org/10.1523/JNEUROSCI.0422-23.2023 收到日期:2023 年 3 月 8 日 修订日期:2023 年 10 月 5 日 接受日期:2023 年 10 月 10 日 版权所有 © 2023 Novembre 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是对原始作品进行适当的署名。
可充电电池正在加速从化石燃料到可再生能源的过渡。考虑到所需的大量电池材料,材料和流程中的可持续性是最重要的。在各种下一代电池化学中,锂离子蝙蝠(ALIBS)在本质上是安全的,即使是在高功率密度下,也可以在基于非水溶液的锂离子细胞的现有生产过程中实施。例如,正如Li等人首先提出的,[1] ALIBS是含有有机溶剂的常规电池的可持续替代品,因为水性电力是环保的,不可易受的,并且不可易受的。虽然需要认真解决锂开采的道德问题和环境影响,但水溶液的离子电导率较高,可以为Alibs提供更具吸引力的快速充电能力。然而,水的狭窄电化学稳定性窗口(ESW)为1.23 V极大地阻碍了其水力电解,导致水电解会导致氢进化反应(HER)和氧气
摘要 背景 线索反应性,即对条件线索的敏感性增强,与习惯性和强迫性饮酒有关。然而,之前大多数关于酒精使用障碍 (AUD) 的研究都比较了酒精和中性条件下的大脑活动,仅仅是将大脑活动视为线索触发的神经反应。 目的 本研究旨在发现 AUD 个体在处理视觉酒精线索过程中的神经子过程,以及这些神经模式如何预测复发。 方法 使用线索反应性和评级任务,我们分别用表征相似性分析建模了解码酒精线索的视觉对象识别和奖励评估过程的模式,并比较了 AUD 和健康个体的解码参与度(即神经反应与假设的解码模型之间的距离)。我们进一步探索了已确定的神经系统与整个大脑之间的连接,并利用神经模式的解码参与度预测 6 个月内的复发。 研究结果 与健康个体相比,AUD 个体在解码视觉特征时表现出与运动相关的大脑区域更高的参与度,并且他们的奖励、习惯和执行网络更多地参与评估奖励价值。连接分析表明,在酒精成瘾患者中,所涉及的神经系统与高级认知网络在酒精线索处理过程中广泛相连,额叶眼区和背外侧前额叶皮层的解码参与可能有助于预测复发。结论这些发现从视觉对象识别和奖励评估的组成过程,深入了解了酒精成瘾患者与健康参与者在酒精线索解码方面的差异。临床意义所确定的模式被认为是酒精成瘾患者的生物标志物和潜在治疗靶点。
摘要 - 目的:压力反应性指数1(PRX)是评估神经严重护理中脑自动卵形2的常见指标。这项研究旨在通过4个个性化PRX算法(PPRX)5的开发和理想的超参数鉴定来提高PRX的3个临床实用性。6方法:使用来自TrackTBI数据集的创伤性脑8损伤患者的Simu-7和多模式监测数据对算法误差进行了定量。使用误差和生理量之间的线性重新介绍,心脏10率被确定为造成PRX误差的潜在原因。通过将PRX平均为12衰老到心跳来开发11个PPRX方法。标准13 PRX算法的理想超参数识别为最小化算法14误差。15结果:PRX算法对HY-16个Perparameter和患者变异性高度敏感。错误与患者心率密切相关。通过将PRX参数化至18个心跳,PPRX方法可显着降低对患者变异性和超参数20选择的19个敏感性,同时也降低了噪声。在标准PRX 21算法中,平均为10秒的窗口和相关的40个样本的22个窗口导致总体23个错误最低。24结论:个性化的PRX增强了鲁棒性25和大脑自动调节估算的准确性-26
突然的、令人意外的感觉事件会触发神经过程,从而迅速调整行为。为了研究这种现象的系统发生和机制,我们训练两只雄性恒河猴通过对等长操纵杆施加力量来将光标保持在视觉目标内。我们研究了令人意外的听觉刺激对施加的力量、头皮脑电图 (EEG) 活动和从背外侧前额叶皮质记录的局部场电位 (LFP) 的影响。听觉刺激引起 (1) 等长力的双相调制,短暂下降然后是纠正性的紧张性增加,和 (2) 由两个大的负波 - 正波 (N70 和 P130) 主导的 EEG 和 LFP 偏转。EEG 电位在头皮顶点对称且最大,非常类似于人类的“顶点电位”。 “皮层电位和力量紧密相关:P130 振幅预测了矫正力增加的幅度,特别是在从深层而非浅层皮层记录的 LFP 中。这些结果揭示了一种系统发育上保留的皮层运动机制,支持对突出的感觉事件做出反应的适应性行为。