摘要:如今,现代粒子物理实验的前端电子设备需要非常精确的时钟信号,以供读取链中的不同元素。时钟分配系统,模拟和数字转换器的时间,千兆串行链路是需要抖动非常低的时钟信号的组件的示例。拟议的项目旨在开发新的辐射耐受性相锁环(PLL)IP块,用于抖动低于10 ps的时钟信号生成,或者在PLL控制中添加数字路径的情况下更好。该块将在现代TSMC 65 nm技术中开发,以允许其在EIC项目中考虑的未来读数ASIC中,尤其是在我们团体目前正在开发的SALSA MPGD读数芯片中。PLL也可以是具有相调整功能的低功率独立时钟扇出ASIC的基础,这对于特定的EIC前端应用可能需要。该项目将涵盖IP块的仿真和设计及其原型制作和验证。
由于其无与伦比的定时分辨率和量子效率,超导纳米线单光子探测器(SNSPD)已成为Quantum Optics的主要技术。SNSPD可以以高于5 t的磁场的高速率以极高的检测效率运行,而深色计数速率接近零。效果,以新型的超导电子设备作为混合低温性驱动器读取结构,以开发低功率的冷冻量读数ASIC。由于纳米线是核和粒子物理领域中相对较新的技术,因此拟议的研发计划将研究超导纳米线传感器,超导电子设备以及原型Crocecmos Front-End End End ASIC的辐射硬度。我们将在高背景辐射环境中运行时测试这些设备的性能。我们还将研究暴露于强烈的电子,中子和伽马辐射来源的超级传导设备的辐射硬度,以识别传感器的失效模式,否则,预计会很难辐射。
•数据和供应能量的非接触式传输•13.56 MHz的工作频率•106 kbit/s的数据传输•16位CRC的数据完整性,奇偶校验,位编码,位计数•工作距离•运行距离高达100 mm(取决于各种参数,例如,例如field strength and antenna geometry) • 7-byte serial number (cascade level 2 according to ISO/IEC 14443-3) • Automatic NFC counter triggered at the first read command after a reset • Secure Unique NFC (SUN) message authentication feature implemented via ASCII mirroring of the UID, NFC counter and CMAC into the NDEF message in the user memory, which changes on every readout after a reset •基于ECC的原创性签名,提供自定义和永久锁定签名的选项•快速读取命令•True Anti-Collision•50 PF输入电容
训练初始解码器,长度不同,并包含不同数量的自适应解码器变化(闭环解码器自适应 (CLDA) 事件,见方法)。初始 CLDA 的数量在各个系列中有所不同,但旨在提供足够的控制以在整个工作区内移动光标,确保可以达到所有目标。中间系列 CLDA 事件仅旨在在神经测量值发生变化时保持性能。如前所示 [30],性能在多天内得到改善,从而提高了任务成功率并减少了到达时间(图 1C,猴子 J 的选定系列;所有后续单系列示例分析都使用此系列以保持一致性。有关猴子 S 的示例系列,请参见图 S1A,有关猴子 J 的其他示例系列,请参见图 S1C)。解码器在学习过程中进行了调整以调整参数(“仅更改权重”,图 1B)或替换非平稳单元并更新参数(“读出 + 权重更改”,图 1B)。初始解码器训练和读出集合变化时的读出单元选择仅基于单元记录属性(例如测量的稳定性);功能属性,例如有关
在这个项目中,您将与一个多学科团队合作,该团队在神经科学、微电子学、化学和计算生物学方面拥有专业知识,结合 CMOS 生化传感器和神经形态工程的最新进展,开发第一个智能生物芯片,用于精确解释器官芯片平台中的类器官生化活动。您将研究用于读取微米级传感器阵列以进行电化学成像的新型超低功耗 IC,这些 IC 可以集成在一起,在微型化尺寸的类器官芯片中提供全面的电化学分析。读出电路将进行优化,以 (i) 提供干扰成分的可调压缩以提高测量分辨率,以及 (ii) 基于分布式事件的编码以提高后神经 AI 处理阶段的性能。
摘要:本文概述了用于测量可见光谱范围内光的硅基光学传感器。本文重点介绍了基于 CMOS(互补金属氧化物半导体)技术的传感器,因为该技术具有高可用性、低成本、易于原型设计以及完善的制造工艺。CMOS 技术允许在同一微型设备中集成 CMOS 读出和控制电子设备,具有高批量制造、高重复性和低成本的特点。本文首先解释光电转换背后的现象。它还介绍和描述了负责光转换、读出电子设备的最常见组件及其主要特性。本文最后介绍了一些选定的应用程序,以了解这些传感器的使用地点和使用方式。
更多信息:Poikela,TimePix等。“ timePix3:一个65K频道混合像素读数芯片,带有TOA/TOT和稀疏读数。”仪器杂志9.05(2014):C05013。
基于数值优化的实现实际设备门和参数,我们研究了相位频率(重复)代码的性能,该代码在载有单粒细胞量子量子的线性芯片(GAAS)量子点的线性阵列上。我们首先使用电路级别和现象学噪声的简单误差模型来检查代码的预期性能,例如,报告的电路级去极化噪声阈值约为3%。然后,我们使用最大样本和最小匹配的解码器进行密度 - 矩阵模拟,以研究实现真实设备的消除,读出误差以及准危机以及快速门噪声的效果。考虑到量子读数误差与dephasing时间(t 2)之间的权衡,我们确定了位于实验范围内的相位闪光代码的子阈值区域。
图1。比例计量CRISPR-CAS12A系统。基于双通道FRET的CRISPR-CAS12A记者系统的示意图。电流(顶部)报告基因系统依赖于荧光团 - 猝灭记者,该记者包括黑暗(非辐射)淬火以防止发射和单个通道读数来检测裂解的报告基因。提出的读取系统而不是使用可见光的淬火。虽然报告荧光团保持与猝灭剂的结合,但报告基因系统形成一个fret对,并在可见的淬灭的发射波长中发出光。在CAS12A裂解时,报告荧光团发射通道中的信号增加,而淬火发射通道中的信号降低。因此,被分析的信号是报告荧光团发射通道与减少淬灭发射通道的比率。