电荷转移解离质谱法 (CTD-MS) 已被证明可在气相中诱导生物离子的高能碎裂,并提供类似于极紫外光解离 (XUVPD) 的碎裂光谱。迄今为止,CTD 通常使用动能介于 4-10 keV 之间的氦阳离子来引发自由基导向的分析物碎裂。然而,作为一种试剂,氦气最近已被列为一种越来越稀缺和昂贵的关键矿物,因此本研究探索了使用更便宜、更易获得的试剂气体的潜力。使用各种 CTD 试剂气体(包括氦气、氢气、氧气、氮气、氩气和实验室空气)对聚合度为 4 的模型肽缓激肽和模型寡糖 k-角叉菜胶进行碎裂。CTD 结果还与低能碰撞诱导解离 (LE-CID) 进行了对比,后者在同一个 3D 离子阱上收集。使用恒定的试剂离子通量和动能,所有五种替代试剂气体都产生了与 He-CTD 相比非常一致的序列覆盖率和碎裂效率,这表明试剂气体的电离能对生物离子的活化影响可以忽略不计。所有气体的 CTD 效率范围为缓激肽的 11-13% 和 k -角叉菜胶的 7-8%。在这些狭窄的范围内,缓激肽的 CTnoD 峰的丰度和缓激肽的 CTD 碎裂效率都与 CTD 试剂气体的电离能相关,这表明共振电荷转移在该肽的活化中起的作用很小。缓激肽和 k-角叉菜胶的大部分激发能来自电子停止机制,该机制由试剂阳离子与生物离子最高占据分子轨道 (HOMO) 中的电子之间的长程相互作用描述。CTD 光谱没有提供任何证据表明生物离子与氢气、氧气和氮气等反应性更强的气体之间存在共价结合产物,这意味着试剂离子的高动能使它们无法进行共价反应。这项工作表明,任何测试的替代试剂气体都是未来 CTD-MS 实验的可行选择。© 2021 Elsevier BV 保留所有权利。
图1。在去除RNase和dNase中,MP生物医学Nuc-Off核酸酶和DNA去除喷雾剂和竞争者T溶液的性能比较。A. RNase消除。在室温下孵育5分钟,将4μl的去除试剂和不同量的RNase(以1μl为单位)的混合物孵育;之后,加入1μlRNA,并在室温下进一步孵育15分钟,然后在含有甲醛的琼脂糖凝胶中变性和最终混合物的电泳。B. DNase消除。在室温下孵育4μl的去除试剂和不同量的DNase(以1μl)的混合物5分钟;之后,将1μl10X反应缓冲液和1μgDNA和无核酸酶的水加入总体积10μl,并在室温下进一步孵育15分钟,然后是最终混合物的琼脂糖凝胶电泳。C.去除试剂对DNA稳定性的影响。在室温下孵育15分钟,将4μl的去除试剂和1μl基因组DNA的混合物进行孵育,然后通过琼脂糖凝胶电泳进行分析。D.去除试剂对RNA稳定性的影响。在室温下孵育4μl的去除试剂和1μlRNA的混合物,然后变性添加含有甲醛的琼脂糖凝胶电泳。此处显示的图仅供参考,它可能会根据不同的实验条件而有所不同。
图1。在去除RNase和dNase中,MP生物医学Nuc-Off核酸酶和DNA去除喷雾剂和竞争者T溶液的性能比较。A. RNase消除。在室温下孵育5分钟,将4μl的去除试剂和不同量的RNase(以1μl为单位)的混合物孵育;之后,加入1μlRNA,并在室温下进一步孵育15分钟,然后在含有甲醛的琼脂糖凝胶中变性和最终混合物的电泳。B. DNase消除。在室温下孵育4μl的去除试剂和不同量的DNase(以1μl)的混合物5分钟;之后,将1μl10X反应缓冲液和1μgDNA和无核酸酶的水加入总体积10μl,并在室温下进一步孵育15分钟,然后是最终混合物的琼脂糖凝胶电泳。C.去除试剂对DNA稳定性的影响。在室温下孵育15分钟,将4μl的去除试剂和1μl基因组DNA的混合物进行孵育,然后通过琼脂糖凝胶电泳进行分析。D.去除试剂对RNA稳定性的影响。在室温下孵育4μl的去除试剂和1μlRNA的混合物,然后变性添加含有甲醛的琼脂糖凝胶电泳。此处显示的图仅供参考,它可能会根据不同的实验条件而有所不同。
4.3.4.1 程序。使用通风橱中的蒸汽浴或加热板蒸发 25 mL 容量瓶中的 2.0 mL 推进剂和 0.2 mL 1N 氢氧化钠。用氮气吹扫容量瓶以促进蒸发。用 2.0 mL 硫酸铁铵试剂和 2 mL 无氯蒸馏水溶解残留物。加入 1.0 mL 饱和硫氰酸汞试剂,旋涡混合,用无氯蒸馏水稀释至 25 mL 刻度。将容量瓶倒置几次再次混合,并在黑暗中静置 15 至 30 分钟。将蒸馏水的吸光度设为“0”后,在 5.0 cm 比色皿中测量试剂空白和样品溶液在 460 nm 下的吸光度。从样品吸光度中减去试剂空白的吸光度。根据4.3.4.3构建的校准曲线,测定氯化物含量。
C Reagents, Plate Layouts, and Methods................................................................................74 Reagent Set............................................................................................................................ 74 Plate Layouts.......................................................................................................................... 75方法................................................................................................................................................................................................................................................................................................................................................................................................. 77 30厘米毛细管的条件方法................................................................................................................................................................................... Capillaries.....................................................80 Shutdown Method for 30 cm Capillaries............................................................................ 81 Capillary Rinse Method for 30 cm Capillaries.................................................................... 82 Conditioning Method for 50 cm Capillaries........................................................................ 83 Linear dsDNA Separation Method for 50 cm Capillaries....................................................84 Shutdown Method for 50 cm Capillaries............................................................................ 86
转染时细胞密度(%汇合)。转染时CHO细胞亚型的建议细胞密度≥80%汇合。确定每个CHO细胞亚型的最佳细胞密度,以最大程度地提高转染效率。在转染前18-24小时将细胞划分,以确保细胞在转染时积极分裂并达到适当的细胞密度。DNA纯度。使用高度纯化,无菌和无污染物的DNA进行转染。无内毒素且具有260/280的吸光度比为1.8-2.0的质粒DNA准备。DNA,因为它可能包含高水平的内毒素。我们建议使用Miraclean®内毒素去除试剂盒(miR 5900)从DNA制备中去除内毒素的任何痕迹。TransIt® -cho试剂:DNA比。作为起点,使用3 µL每1 µg DNA的反式IT-CHO试剂。可以通过从每µg 1-5 µl的DNA滴定试剂来确定最佳的反式IT-CHO试剂与DNA比。请参阅第3页的表1,以获取建议的起始条件。CHOMOJO试剂:DNA比率。根据细胞培养和实验条件,可能需要不同的Cho Mojo试剂量。最佳的Cho Mojo试剂:DNA比应通过滴定从每µg每µg DNA滴定为0-2 µl的试剂来确定。请参阅第3页的表1,以获取建议的起始条件。复杂的形成条件。准备trans It-cho:Cho Mojo:无血清生长培养基中的DNA复合物。Mirus建议Opti-Mem I还原媒介。细胞培养条件:适当的培养基中,有或没有血清的培养细胞。无需执行介质更改即可去除转染络合物。反式转染试剂盒在没有转染后培养基变化的情况下进行转染时会提高效率。存在抗生素:抗生素将抑制转染复合物的形成,因此应排除在复合形成步骤中。可以将转染复合物添加到包含低水平抗生素(0.1-1倍终浓度的青霉素/链霉素混合物)的完整培养基中生长的细胞中。转染后的孵育时间。确定每种细胞类型后转染后最佳的孵育时间。最佳孵育时间通常为24-72小时,但会根据实验的目标,质粒的性质和表达蛋白质的半衰期而变化。
pandapure®️蛋白质表达和纯化试剂盒(“ Pandapure®️蛋白质试剂盒”)包括Pandapure®Pandapure®quroteinReagent和DNA,用于使用合成细胞器和自我切割标签纯化重组蛋白。在蛋白质表达和靶向过程中,对宿主细胞进行编程以形成合成细胞器并使靶蛋白分裂。然后,在蛋白质试剂中,蛋白质会自动从标签上裂解,从而从细胞器释放。
•精确的反应控制以最大程度地减少废物和试剂的用法:该公司旨在最大程度地减少废物产生和过度使用试剂。拉曼光谱学提供对反应进度的准确和直接见解的能力,使他们能够更好地控制反应,从而减少废物和试剂消耗。
24/176 MHRA, UK AS460 TGA, Australia H3-Ab-2412 CBER/FDA, USA WHO Essential Regulatory Laboratories (ERLs) contact details for reagent orders and other information : MHRA: standards@mhra.gov.uk or enquiries@mhra.gov.uk TGA: influenza.reagents@tga.gov.au For reagents available from CBER,电子邮件cbershippingrequests@fda.hhs.gov。有关其他类型和亚型候选疫苗病毒和效力测试试剂的信息,请转到:( https://www.who.int/teams/global-influenza-programme/vaccines/who-recommendations/Candiated-Recommendations/candidate-vaccine-vaccine-viruse)。有关一般查询,请联系gisrs-whohq@who.int
双基因组DNA隔离试剂盒(Plant)CAT No.PDC05-0100尺寸:100个反应样本:100 mg新鲜植物组织或50 mg干植物组织格式:试剂和自旋柱操作时间:1小时洗脱体积:50〜200 UL描述双基因组DNA隔离试剂盒(工厂)结合了试剂系统和旋转柱系统。该套件专门设计用于从植物样品中分离基因组DNA。这种独特的试剂系统可确保样品的高产量和质量良好的总DNA。自旋柱系统旨在纯化或浓缩DNA产物,这些DNA产物先前已与试剂分离。整个过程可以在1小时内完成,而无需苯酚提取。纯化的DNA适用于PCR或其他酶促反应。套件内容