为了推进基于学习的融化算法的研究,已经开发了各种合成雾数据集。但是,现有的数据集使用大气散射模型(ASM)或十个实时渲染引擎而努力产生光真实的雾图像,以准确模仿实际的成像过程。这种限制阻碍了模型从合成到真实数据的有效概括。在本文中,我们引入了旨在生成照片现实的雾图图像的端到端模拟管道。该管道全面构建了整个基于物理的雾化场景成像,与现实世界图像捕获的方法紧密相位。基于此管道,我们提出了一个名为Synfog的新合成雾数据集,该数据集具有天空和主动照明条件以及三个级别的雾气状态。实验结果表明,与其他人相比,在与其他模型中相比,与其他人相比,在synfog上训练的模型在视觉感知和检测准确性方面表现出了较高的性能。
大脑计算机界面(BCIS)是传统上用于医学的系统,旨在与大脑相互作用以记录或刺激神经元。尽管有好处,但文献表明,专注于神经刺激的侵入性BCI当前的脆弱性使攻击者能够控制。在这种情况下,神经网络攻击成为能够通过进行神经过度刺激或抑制来破坏自发神经活动的威胁。先前的工作在小型模拟中验证了这些攻击,其神经元数量减少,缺乏现实世界中的复杂性。Thus, this work tackles this limitation by analyzing the impact of two existing neural attacks, Neuronal Flooding (FLO) and Neuronal Jamming (JAM), on a complex neuronal topology of the primary visual cortex of mice consisting of approximately 230,000 neurons, tested on three realistic visual stimuli: flash e ff ect, movie, and drifting gratings.在每个刺激的三个相关事件中评估了每次攻击,还测试了攻击25%和50%神经元的影响。根据尖峰和偏移百分比的数量,结果表明,攻击对电影产生了最大的影响,而黑暗和固定事件是最强大的。尽管两种攻击都可以显着发作神经活动,但果酱通常更具破坏性,产生更长的时间延迟,并且患病率更高。最后,果酱不需要改变许多神经元以显着发神经活动,而FLO的影响随着攻击的神经元数量而增加。
普通的英语摘要背景和研究的目标是起搏器是一种小型电气设备,用于治疗某些异常的心律(心律不齐),可能会导致您的心脏跳动太慢或错过跳动。在手术过程中,正在接受心脏直视手术的Harefield医院的所有患者均插入了临时的起搏器,因为电导传导干扰很常见。暂时的起搏管理可能会变得复杂,因为某些参数会迅速变化,并且无法对起搏器设置进行编程,从而导致较低的血压或危险的心律。因此,临时起搏器需要日常检查。但是,英国的临时起搏器管理中的标准化培训有限,没有模拟器培训。目的:1。创建一个起搏模拟器来培训医生如何最好地管理和调整临时起搏器2。建立一个自动警报系统来检测不良的起搏器设置,并清楚地显示如何正确调整设置
电气和计算机工程部,伍斯特理工学院,美国马萨诸塞州伍斯特市B Max Planck Inst。对于人类认知和脑科学,德国莱比锡c莱比锡应用科学大学(HTWK),工程学院,莱比锡,德国d d d div>计算神经刺激研究计划,无创神经调节单元,实验治疗和病理生理学分支,国家心理健康研究所,美国国立卫生研究院,贝塞斯达,马里兰州贝塞斯达,美国马里兰州Gathinoula A. Martinos Ctr。用于生物医学成像,马萨诸塞州综合医院,美国马萨诸塞州查尔斯敦,h伍斯特理工学院数学科学系,美国马萨诸塞州伍斯特,美国马萨诸塞州
人工智能 (AI) 在汽车和金融等领域或人力资源管理 (HRM) 等业务部门中有许多用途。本研究对德国中小型企业人力资源管理人员进行了一项调查,调查内容是 AI 对他们自己和其他公司的预期影响。调查发现,存在不切实际的乐观迹象,即认为负面影响更有可能发生在他人身上而不是自己身上。AI 将发挥越来越重要的作用,其中降低成本和提高效率是最高动机,而缺乏 AI 专家是最大的阻碍因素。参与者认为 AI 将减少其他公司的员工数量,同时让他们自己的员工数量增加。他们预计 AI 将接管其他公司的更多任务,并相信 AI 将对其他公司的人力资源管理产生更大的影响,尤其是在行政处理方面。未来的研究应包括对其他业务部门的(重复)调查。
a. 总体规划概念。................................................................................................................17 b. TEMP/T&E 战略的输入。................................................................................................18 c. 现实的全谱生存力和杀伤力测试计划。......................................................................18 d. MBRA。.............................................................................................................................19 e. 现实的全谱生存力和杀伤力测试合同要求的输入。.............................................................................20 f. 项目要求的输入。.............................................................................................................21 4.2. 现实的全谱生存力和杀伤力测试的准备和执行。.................................................................................................21 4.3. 现实的全谱生存力和杀伤力分析与评估。.................................................................................................21 4.4. 现实的全谱生存力和杀伤力报告。 ........................................... 22 附录 4A:详细的全频谱生存力和致命性规划和报告要求 ...................................................................................................................... 23 词汇表 ...................................................................................................................................................... 37
动物的身体影响神经系统如何产生行为。因此,2对感觉运动行为神经控制的详细建模需要3个身体的详细模型。在这里,我们在Mujoco Physics发动机中贡献了4种水果果蝇Melanogaster的解剖学生物力学全身模型。我们的模型是通用的,5可以在陆地和空气中模拟各种频率行为。我们通过模拟逼真的运动和步行来证明模型的6个通用力。为了支持7这些行为,我们通过流体力和8种粘附力的现象学模型扩展了穆霍科。通过数据驱动的端到端强化学习,我们证明了9这些进步使能够基于高级转向控制信号的复杂轨迹进行现实运动10的神经网络控制器的训练。我们通过训练12个模型来证明11使用视觉传感器以及重复使用预训练的通用式旋转控制器。我们的项目是一个开源平台,用于在体现的上下文中对感觉运动行为的神经控制建模。14
使用现实世界数据了解治疗对健康相关结果的影响需要定义因果参数并施加相关识别假设,以将其转化为统计估计。半参数方法,例如目标最大似然估计器(TMLE),以构建这些参数的渐近线性估计器。要进一步建立这些估计量的渐近效率,必须满足两个条件:1)数据可能性的相关组成部分必须属于Donsker类,而2)2)滋扰参数的估计值在其真实值的速度上以比N -1 /4更快的速度收敛。高度适应性的拉索(HAL)通过在具有有界分段变化标准的Càdlàg函数中充当经验风险最小化来满足这些标准,已知是Donsker。hal达到了所需的收敛速度,从而保证了估计量的渐近效率。HAL最小化其风险的功能类别具有足够的灵活性,可以捕获现实的功能,同时保持建立效率的条件。此外,HAL可以对非方向可区分参数(例如条件平均治疗效果(CATE)和因果剂量响应曲线,对精确健康很重要。尽管在机器学习文献中经常考虑这些参数,但这些应用通常缺乏适当的统计推断。HAL通过提供可靠的统计不确定性量化来解决这一差距,这对于健康研究中的知情决策至关重要。
摘要果蝇幼虫被广泛用作模型生物体7研究,其中精确的行为跟踪能够对个体和8个种群级行为指标进行统计分析,这些指标可以为幼虫行为的数学模型提供信息。9在这里,我们提出了一个分层模型架构,其中包括三层,以促进模块化10模型构建,闭环模拟以及经验和11个模拟数据之间的直接比较。在基本层,自主运动模型能够执行12个探索。基于新颖的运动学分析,我们的模型特征是间歇性向前爬行13,该爬行13与横向弯曲相结合。在第二层中,通过在模拟环境中进行主动14传感和自上而下的运动调制来实现导航。在顶层,15个行为适应需要关联学习。我们评估了16个基于代理的自主探索,趋化性和气味偏好17测试的虚拟幼虫行为。我们的行为体系结构非常适合18个神经力学,神经或单纯的统计模型组件的模块化组合,从而促进其评估,19比较,扩展和集成到多功能控制体系结构中。20
地震会严重影响社会和经济,强调有效搜索和救援策略的需求。作为AI和机器人技术,越来越多地支持这些努力,对培训的高保真性,实时模拟环境的需求已变得紧迫。地震模拟可以视为复杂的系统。传统的仿真方法,主要集中于计算单个建筑物或简化建筑集聚的复杂因素,通常在为城市环境提供现实的视觉效果和实时结构性损害评估方面通常不足。为了解决这一缺陷,我们基于虚幻引擎中的混乱物理系统引入了一个实时的,高视觉的忠诚地震仿真平台,该平台是专门设计的,旨在模拟对城市建筑的损害。最初,我们使用遗传算法根据现实世界测试标准将来自ANSYS的材料模拟参数校准到虚幻发动机的断裂系统中。此对齐确保在实现实时功能的同时,确保两个系统之间的结果相似。另外,通过整合真实的地震波形数据,我们改善了模拟的真实性,确保它准确地反映了历史事件。所有功能都集成到视觉用户界面中,从而实现零代码操作,从而有助于通过跨学科用户进行测试和进一步开发。我们通过三个基于AI的任务来验证平台的有效性:相似性检测,路径计划和图像分段。本文建立在我们在IMET 2023上介绍的初步地震模拟研究的基础上,并具有显着的增强,包括改善材料校准工作流程和结合建筑基础的方法。