地震会严重影响社会和经济,强调有效搜索和救援策略的需求。作为AI和机器人技术,越来越多地支持这些努力,对培训的高保真性,实时模拟环境的需求已变得紧迫。地震模拟可以视为复杂的系统。传统的仿真方法,主要集中于计算单个建筑物或简化建筑集聚的复杂因素,通常在为城市环境提供现实的视觉效果和实时结构性损害评估方面通常不足。为了解决这一缺陷,我们基于虚幻引擎中的混乱物理系统引入了一个实时的,高视觉的忠诚地震仿真平台,该平台是专门设计的,旨在模拟对城市建筑的损害。最初,我们使用遗传算法根据现实世界测试标准将来自ANSYS的材料模拟参数校准到虚幻发动机的断裂系统中。此对齐确保在实现实时功能的同时,确保两个系统之间的结果相似。另外,通过整合真实的地震波形数据,我们改善了模拟的真实性,确保它准确地反映了历史事件。所有功能都集成到视觉用户界面中,从而实现零代码操作,从而有助于通过跨学科用户进行测试和进一步开发。我们通过三个基于AI的任务来验证平台的有效性:相似性检测,路径计划和图像分段。本文建立在我们在IMET 2023上介绍的初步地震模拟研究的基础上,并具有显着的增强,包括改善材料校准工作流程和结合建筑基础的方法。
给定带有测量活性标记的DNA序列的数据集(图1a),我们以一系列分类令牌(“提示令牌”)的序列编码标签,该标记已预先固定到DNA序列的开始(图1b)。我们训练或填充hyenadna模型以采用处理后的序列并以及时令牌开始执行令牌预测(图1C)。这种形式使我们能够明确地使用对模型序列的任何先验知识。一旦受过训练,就可以使用代表任何所需功能的令牌序列来提示语言模型。该模型现在以及时令牌为条件,一次生成一个DNA序列一个核苷酸(图1d)。并行,我们在同一数据集上训练一个监督的序列到活动回归模型(图1E),并将其应用于生成的序列以选择最匹配所需活动的序列(图1F)。这种合并的方法使我们可以将回归模型用作甲骨文,例如以前的模型引导的方法,而语言模型可确保生成的序列具有现实的内容。最后,我们提供了几种评估生成序列以及模型本身的方法(图1G)。
虽然长期煤炭转型趋势明确,但中国短期和中期煤电发展前景尚不明朗,因此2020年后中国煤电的发展路径受到广泛讨论。本文基于单位机组煤电数据,在省级层面探索了2020年至2030年中国煤电的优化路径。考虑到国家发展目标、省际输电和电力规划中的其他物理限制,我们的模型综合考虑供给侧和需求侧,以评估2030年合理的煤电装机容量。结果和稳健分析表明,2030年中国煤电装机容量可能保持在1100 GW左右。此外,本文还提出了实现这一路径的未来政策和法规。© 2020 Elsevier Ltd. 保留所有权利。
摘要 - 上下文。模型驱动工程师(MDE)中的几项活动,例如模型转换测试,将需要大量现实模型的可用性。然而,到目前为止,在生产大型模型存储库方面已经失败了,并且缺乏免费的工业模型是MDE中最重要的问题之一。因此,MDE研究人员开发了各种工具和方法来使用不同的方法(例如图形语法,分区和随机生成)生成模型。但是,考虑其现实主义,这些工具很少专注于生产新模型。贡献。在这项工作中,我们利用生成深度学习,尤其是生成的对抗网络(GAN),提出了一种生成新结构现实模型的方法。在Eclipse建模框架之上构建,该提议的工具可以从元模型和一个大实例模型作为输入中生成新的人造模型。基于图的指标已用于评估该方法。初步统计结果表明,使用gans可以有望创建新的现实模型。索引术语 - 模型生成,MDE,生成对手网络,工具支持
摘要果蝇幼虫被广泛用作模型生物体7研究,其中精确的行为跟踪能够对个体和8个种群级行为指标进行统计分析,这些指标可以为幼虫行为的数学模型提供信息。9在这里,我们提出了一个分层模型架构,其中包括三层,以促进模块化10模型构建,闭环模拟以及经验和11个模拟数据之间的直接比较。在基本层,自主运动模型能够执行12个探索。基于新颖的运动学分析,我们的模型特征是间歇性向前爬行13,该爬行13与横向弯曲相结合。在第二层中,通过在模拟环境中进行主动14传感和自上而下的运动调制来实现导航。在顶层,15个行为适应需要关联学习。我们评估了16个基于代理的自主探索,趋化性和气味偏好17测试的虚拟幼虫行为。我们的行为体系结构非常适合18个神经力学,神经或单纯的统计模型组件的模块化组合,从而促进其评估,19比较,扩展和集成到多功能控制体系结构中。20
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
摘要。在结直肠癌诊断中,常规结肠镜检查技术面临着临界局限性,包括有限的视野和缺乏深度信息,这可能会阻碍检测预癌病变。当前的方法很难为结肠表面提供全面和策划的3D重建,这可以帮助最大程度地减少缺失的区域并重新进行癌前息肉。解决这个问题,我们介绍了“高斯煎饼”,这种方法利用了3D高斯分裂(3D GS)与经常基于神经网络的同时定位和映射(RNNSLAM)系统相结合。通过将几何和深度正则化引入3D GS框架 - 我们的方法可确保高斯与结肠表面更准确地对齐,从而使3D重建更加顺畅,并对详细的纹理和结构进行了新颖的观看。在三个Di-verse数据集中进行的评估表明,高斯煎饼增强了新型视图的合成质量,超过了当前的领先方法,PSNR增长了18%,SSIM提高了16%。它还提供了超过100×的更快渲染和超过10倍的培训时间,使其成为实时应用程序的实践工具。因此,这有望实现临床翻译,以更好地检测和诊断结直肠癌。代码:https://github.com/smbonilla/gaussianpancakes。
摘要 - 虽然自动驾驶的能力已迅速发展,但融合到密集的交通仍然是一个重大挑战,但已经提出了许多针对这种情况的运动计划方法,但很难对其进行评估。大多数现有的闭环模拟器依赖于其他车辆的基于规则的控件,这导致缺乏多样性和随机性,因此无法准确评估高度交互式场景中的运动计划能力。此外,传统的评估指标不足以全面地评估密集流量合并的性能。回应,我们提出了一个闭环评估基准,用于评估合并方案的运动计划功能。我们的方法涉及在大规模数据集中训练的其他车辆,具有微观行为特征,可显着提高复杂性和多样性。此外,我们通过利用大型语言模型来评估每种自动驾驶汽车合并到主要道路上来重组评估机制。广泛的实验证明了该评估基准的高级性质。通过此基准,我们获得了对存在方法的评估并确定了常见问题。我们设计的环境和车辆运动计划模型可以通过https://anonymon.4open.science/r/ bench4merge-eb5d访问。
摘要。为提供安全的替代方案,用于术中的流体镜检查,已研究超声(US)作为各种计算机辅助矫形外科手术(CAOS)的替代安全成像方式。然而,低信号与噪声比,成像伪影和骨表面出现几毫米(mm)的厚度,阻碍了我们在CAOS中的广泛扩散应用。为了为这些问题提供解决方案,研究集中于精确,健壮和实时骨分割方法的发展。最近基于深度学习的方法显示出非常有希望的结果。但是,在训练深度学习模型时,骨头数据的稀缺引入了显着的挑战。在这项工作中,我们提出了一种基于一种新的生成对抗网络(GAN)结构的计算方法,以(1)生成合成的B模式US图像和(2)实时实时的骨表面掩模。我们展示了如何针对此类任务实现偶性概念。由两个卷积块武装,称为自预测和自我发项块,我们提出的gan模型合成了现实的B模式US图像和分割的骨骼面膜。使用两种不同的美国机器对27名受试者收集的1235次扫描进行了定量和定性评估研究,以显示我们模型与最先进的GAN的比较结果,用于使用U-NET进行骨表面分割的任务。
基于数值优化的实现实际设备门和参数,我们研究了相位频率(重复)代码的性能,该代码在载有单粒细胞量子量子的线性芯片(GAAS)量子点的线性阵列上。我们首先使用电路级别和现象学噪声的简单误差模型来检查代码的预期性能,例如,报告的电路级去极化噪声阈值约为3%。然后,我们使用最大样本和最小匹配的解码器进行密度 - 矩阵模拟,以研究实现真实设备的消除,读出误差以及准危机以及快速门噪声的效果。考虑到量子读数误差与dephasing时间(t 2)之间的权衡,我们确定了位于实验范围内的相位闪光代码的子阈值区域。