皮肤中受体产生的热和接触感觉对于对物理环境的感知至关重要,在人际关系中具有特别有力的作用。以可编程方式复制这些感觉的技术的进步不仅具有增强虚拟/增强现实环境的潜力,而且还对具有截肢或感官功能受损的人的医疗应用有望。工程挑战是在与精确的空间分辨率,功率 - 有效的操作,动态范围广泛的范围和快速的时间响应中相互互动,并在热调节中都具有快速的时间响应,形式可以延伸到身体的大区域。本文引入了无线,皮肤 - 兼容的热触觉调节界面,旨在解决这些挑战中的某些挑战,并具有提供可编程的增强振动位移和高速热刺激的可编程模式。实验和计算研究量化了在热触觉刺激器中垂直堆叠的设计布局的热和机械效率,这些布局也支持真实的时间,封闭 - 环路控制机制。该平台可有效地通过皮肤传达热和物理信息,如机器人假肢的控制以及与压力/温度敏感的触摸显示器的相互作用所证明的那样。
注意力越来越集中在扩展现实(XR)和体现的虚拟药物(EVA)的潜力上,以显着影响人类的行为。虽然文献不断扩展探讨了XR和EVA的个体影响,但文献中关于它们对引起人类的亲社会行为的共同影响的文献存在明显的差距。这项系统评价的目的是探索这一交叉点,为其对人类亲社会行为的多方面影响提供见解,以及对XR中EVA的未来研究和发展的影响。由于直接关注EVA的研究(即自动计算机控制的实体),我们的系统审查采用了范围范围的方法。尽管如此,我们观察到了使用各种形式的虚拟字符(VC)来引起亲社会行为。对15个精选研究的深入分析表明,XR和VC如何影响用户的亲社会行为和相互作用的复杂模式。我们的审查表明,EVA有希望促进亲社会行为的潜力。然而,对于确定与设计和互动相关的属性,需要进一步的研究,从而增强了这些技术的有效性,尤其是对于XR环境中的社会交互式EVA。
执行功能 (EF) 是我们一生中身心健康、学业成就、社会发展和心理健康的一项基本技能。它是指一系列自上而下的控制过程,当依赖自动反应、本能或直觉是不明智、不足或不可能时使用 (Diamond, 2013)。这些过程主要包括抑制控制、工作记忆、认知灵活性、推理、解决问题和计划 (Cristofori et al., 2019)。然而,从儿童到青少年时期,EF 都不成熟 (Tervo-Clemmens et al., 2023)。此外,ADHD、ASD、阿尔茨海默病和脑损伤等各种因素都可能阻碍 EF,导致执行功能障碍 (Negut et al., 2016)。在本研究中,我们将讨论 EF 的评估和训练,以帮助患有 EF 障碍的儿童和个人在未来使用先进的计算机技术发展这些功能。传统的 EF 评估通常涉及神经心理学测试、行为清单、观察、访谈和工作样本(Lezak,2004;Cristofori 等人,2019)。最近,使用脑机接口 (BCI) 的评估方法,例如在执行 EF 任务期间捕获和分析脑电图 (EEG) 生物信号,已获得更准确的结果(Cipresso 等人,2012、2013;Carelli 等人,2017)。关于 EF 康复,传统方法涉及在医疗保健专业人员的指导下使用真实世界的材料执行重复性任务,这可能很繁琐且不方便。此外,基于 VR 的 EF 康复方法提供了令人愉快和身临其境的虚拟环境和引人入胜的任务,从而提高了 EF 训练的有效性 ( Liao et al., 2019 )。为了解决评估基于 VR 的 EF 训练有效性的问题,已经提出了整合 BCI-VR 的新方法 ( Wen et al., 2018 ; Duan et al., 2023 )。然而,尽管纵向神经心理学评估在神经系统疾病中具有临床和伦理意义,但关于使用 BCI-VR 对身体有局限性的患者进行认知评估和训练的研究数量有限。对昂贵而复杂的设备、有限而简单的软件培训系统以及使用系统和分析数据的特定能力的需求可能是 BCI-VR 临床应用的主要障碍 ( Carelli et al., 2017 )。在此方面,我们深入研究了运用先进的计算机技术进行EF培训和评估的各项研究,并对各个方面的当前趋势和策略提供了见解。
那么,出于多种原因,我们希望瑞典成为正式成员,尤其是因为你们在创新、国防工业和顶级技术方面有很多可以提供的。因此,我们非常期待欢迎您成为正式成员。这将使北约更加强大,瑞典更加安全。对我来说,参加北约工业论坛很重要,因为我知道工业对我们的国防有多么重要。我知道并不是每个人都以同样的方式看待这一点。实际上,一些投资者误以为国防工业在某种程度上是不道德的。但生产武器来保卫北约盟国并没有什么不道德的。捍卫我们的自由并没有什么不道德的。帮助乌克兰士兵保卫国家并没有什么不道德的。事实上,没有工业,就没有防御,没有威慑,也没有安全。
本文介绍了概念验证的增强现实(AR)系统,称为“ smartLab”,用于危险物质科学实验室的安全培训。本文包含设计基本原理,开发,方法和用户研究的概述。用户研究的参与者是领域专家(即,材料科学研究部的实际实验室用户,n = 13),评估使用了问卷调查和自由形式的面试回答。参与者进行了一个虚拟实验实验,该实验与域专家合作设计。在使用AR环境时,它们伴随着虚拟助手。用户研究通过分析其对行为意图维度的影响,提供了有关多个维度的影响,例如预期性能,情绪反应性和空间存在的初步发现,例如预期性能,情绪反应性和空间存在。发现表明用户发现该方法有用,并且他们将考虑使用此类系统。对SmartLab评估数据的定量和定性分析表明,a)基于AR的培训是实验室安全培训的潜在解决方案,而没有现实世界危害的风险,b)现实主义仍然是某些方面的重要特性,例如流体动力学和实验性程序,以及c)使用虚拟助手的使用,并没有提供虚拟助手的使用和不舒服的感觉。此外,该研究建议使用AR辅助工具(虚拟助手,注意力漏斗和原位箭头)来提高可用性,并使培训体验更加用户友好。
本研究的主要目的是了解在阿卜哈省使用增强现实技术如何影响有学习障碍的儿童的创造性思维能力。阿卜哈省教育机构的一群学生是这项研究的对象。这项研究持续了一个月。研究共涉及 30 名学生,其中实验组和对照组各 15 名。实验组在评估初始想象力、感知想象力和变革想象力的后测中表现优于对照组,表明研究结果有显著改善。在后续评估或干预后立即进行的期间,实验组和对照组在想象力思维方面的得分没有统计学上的显著差异。
个人与数字材料之间的抽象相互作用随着元评估的出现而完全改变。因此,即时需要构建尖端的技术,该技术可以识别用户的情绪并不断提供与其心理状态相关的材料,从而改善其整体经验。研究人员提出了一种自然语言处理算法和基于神经模糊的支持向量机自然语言处理(SVM-NLP)的创造性方法,研究人员提出了满足这一需求。通过这种合并,元评估将能够提供高度量身定制和引人入胜的体验。最初,开发了一种神经模糊算法,以通过其生理反应和其他生物识别信息来识别人们的情绪情绪。模糊的逻辑和支持向量机共同努力管理继承的歧义和不可预测性,这导致情绪的更精确和准确的分类。ACGA的一个关键组成部分是NLP技术,它使用实时情感数据在元视频中动态修改和个性化角色,故事和交互功能。提出的方法的新颖性在于基于神经模糊的SVM-NLP算法的创新整合,以准确识别和适应用户的情绪状态,从而增强各种应用程序的元体验。使用Python软件实现了采用的方法。更强的人与计算机相互作用和更广泛的应用,包括虚拟疗法,教育资源,这种适应性方法可显着增强用户的沉浸感,情感参与以及在增强现实环境中的整体满意度,通过为他们的回答调整信息。调查结果表明,基于神经模糊的SVM-NLP情绪识别算法在识别情绪状态方面具有很高的准确性,这有望创建一种更具表情的元评估,更具情感性和沉浸式。
有效的上limb康复对严重受损的中风幸存者仍缺失。最近的研究认可新颖的运动康复方法,例如机器人外骨骼和虚拟现实系统,以恢复中风幸存者的偏见的功能。但是,尚未发现中风后促进中枢神经系统功能重组的最佳方法。肌电图(EMG)信号已用于假肢控制,但它们在康复中的应用受到限制。在这里,我们提出了一种新型方法,以促进病理肌肉激活模式的重组,并通过使用EMG控制的界面在虚拟现实(VR)执行运动时提供个性化的援助,从而增强了中风幸存者中LIMB运动的恢复。我们建议改变视觉反馈以提高VR的运动性能,从而减少实际功能障碍肌肉模式与功能性肌肉的偏差的影响,将积极吸引患者参与运动学习并促进功能肌肉模式的恢复。通过针对肌肉协同作用的特定变化及其中风后出现的激活中的特定变化,可以通过靶向特定的变化来促进有效的康复,从而促进有效的康复,这提供了解决特定个体障碍的康复疗法的可能性。
第二个要求是测试将软件解决方案集成到车辆平台上,以执行许多ADAS操作,包括在开放的真实世界环境中进行自适应巡航控制。MFM是这项测试要求的明显选择,因为试用CAM解决方案的途径提供了校园(迷你城市),城市,农村和高速公路道路(总共超过300英里)的独特组合,可以支持试验。这包括CCTV,气象站,通信单元和高度准确的GPS覆盖范围。