问:为什么用胎儿细胞来制造疫苗?答:科学家最初研究胎儿细胞是为了了解衰老过程。然而,科学合作和疫苗开发中的挑战导致人们开始使用胎儿细胞来开发疫苗。具体来说,科学家在脊髓灰质炎疫苗中发现了一种可能致癌的病毒,称为猿猴病毒 40 (SV40),这种疫苗是通过在猴肾细胞中培养脊髓灰质炎病毒制成的。它之所以被称为 SV40,是因为它是第 40 种被识别的猴子病毒。最终,SV40 被证明不会在脊髓灰质炎疫苗接种者中导致癌症,但这种理解需要时间来发展。在此期间,疫苗科学家意识到,由于病毒需要细胞来生长,他们必须确保 SV40 或其他有害病毒不会出现在未来的疫苗中。偶然的是,研究衰老的最杰出的科学家之一 Leonard Hayflick 正在费城威斯塔研究所的两位著名疫苗科学家 Hilary Koprowski 和 Stanley Plotkin 的走廊对面工作。三人共同意识到,由于胎儿通常不会在子宫内接触病毒,因此他们的细胞可以确保未来的病毒疫苗不会无意中含有可能对人体有害的其他病毒。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
这种空间的体积如此之小,分析物分子的数量正在减少,需要单分子水平的检测方法。特别是,单个非荧光分子的检测非常重要,因为大多数分子没有荧光。相反,我们开发了用于灵敏检测非荧光分子的热透镜显微镜 (TLM),并实现了在 7 fL 中测定 0.4 个分子的浓度 [1] 和使用紫外激发激光计数单个大型生物分子 (λ-DNA) [2]。然而,由于光学背景较大,这是基于 TLM 原理的一个问题,因此无法实现蛋白质等小分子的计数。因此,我们通过引入微分干涉对比 (DIC) 显微镜的原理开发了微分干涉对比热透镜显微镜 (DIC-TLM) 以实现无背景检测。到目前为止,DIC-TLM 可以实现对单个非荧光分子的检测 [3],而之前的 DIC-TLM 使用可见光激发,无法检测在紫外线范围内有吸收的生物分子。本文开发了一种新型紫外激发DIC-TLM(UV-DIC-TLM)用于检测单个蛋白质分子。具体而言,设计了用于紫外激发的DIC棱镜和显微镜等光学元件,验证了UV-DIC-TLM的原理并评估了其性能。
这种空间的体积如此之小,分析物分子的数量正在减少,需要单分子水平的检测方法。特别是,单个非荧光分子的检测非常重要,因为大多数分子没有荧光。相反,我们开发了用于灵敏检测非荧光分子的热透镜显微镜 (TLM),并实现了在 7 fL 中测定 0.4 个分子的浓度 [1] 和使用紫外激发激光计数单个大型生物分子 (λ-DNA) [2]。然而,由于光学背景较大,这是基于 TLM 原理的一个问题,因此无法实现蛋白质等小分子的计数。因此,我们通过引入微分干涉对比 (DIC) 显微镜的原理开发了微分干涉对比热透镜显微镜 (DIC-TLM) 以实现无背景检测。到目前为止,DIC-TLM 可以实现对单个非荧光分子的检测 [3],而之前的 DIC-TLM 使用可见光激发,无法检测在紫外线范围内有吸收的生物分子。本文开发了一种新型紫外激发DIC-TLM(UV-DIC-TLM)用于检测单个蛋白质分子。具体而言,设计了用于紫外激发的DIC棱镜和显微镜等光学元件,验证了UV-DIC-TLM的原理并评估了其性能。
Starkov一直是基于BIM的数字双胞胎开发的先驱,与领先的设施所有者和建筑商合作,确保新建筑提供了适当质量的BIM,并将BIM与其他设施信息系统集成在一起以创建数字双胞胎。因此,斯塔尔科夫在成功部署数字双胞胎的方式上实现了两个重大障碍:现有设施的BIM可用性以及与现有人类驱动的工作流部署数字双胞胎的能力。
并非所有这些能源都具有经济效益。国际能源署发现,到 2050 年,具有成本效益的下一代地热发电量可能达到 800 千兆瓦 (GW)。虽然这只是总潜力的一小部分,但到 2050 年,这仍将提供全球 8% 的电力供应。如果这一部署得以实现,从现在到 2050 年,下一代地热发电将满足 15% 的发电量增长,成为第三大增长来源(仅次于风能和太阳能)。
2023 年,全球发生了重大的经济、技术和政治发展。这些发展导致投资环境动荡。尽管市场充满挑战,但 IMCO 为其客户带来了可观的回报。这一结果在很大程度上反映了 IMCO 在客户资产组合中引入的稳定和战略性变化。它还反映了在资产类别层面的谨慎投资策略中实现的增强和改进,这些策略旨在提高回报。
波多黎各现行的净计量政策允许拥有现场太阳能项目的客户将太阳能连接起来,既可以在自己的家中和企业中使用太阳能,而且当他们生产的太阳能多于建筑物消耗的太阳能时,还可以在电费单上获得输出到电网的零售信用额度。反对继续实施这一净计量政策的人提出的主要论点之一是,该政策以牺牲 LUMA 其他客户为代价,为拥有现场太阳能项目的客户提供补贴。反对净计量政策的人认为,通过允许太阳能客户以大约相当于每千瓦时 24 美分的零售价获得信用额度,这补贴了现场太阳能客户的用电,而牺牲了所有其他客户的利益。为了确定是否存在这种补贴,有必要考虑这种太阳能带来的收益是否超过支付零售级净计量信用额度的成本。与任何产品或服务一样,如果系统所有其他用户获得的收益超过成本,则无需补贴。本报告通过仔细评估净计量信用额度相对于太阳能提供的价值来评估这一问题:a) 对电网和连接到电网的所有客户(称为“直接收益”);b) 为波多黎各所有居民提供的更广泛收益(称为“社会收益”)。直接收益包括由于电网中化石燃料发电减少而降低的成本,以及由于太阳能发电而减少的前瞻性输电和配电支出。此外,现场太阳能资源支持波多黎各压力电网的整体可靠性和弹性,有助于经济发展并避免停电可能带来的健康和安全危害。社会效益包括通过减少空气排放而实现的环境和健康效益,以及通过太阳能投资带来的就业、消费和经济活动增加而实现的经济效益。
1. 根据两个发射、两个接收亚纳秒脉冲的要求定制 FPGA 板和 RTL 设计。数量——1。 2. 基于 RTL 的多输入实时相关,具有可调延迟参数。 3. 符合规格或更好的 RF 组件(除非另有说明,所有组件均具有 50 欧姆阻抗)a. 低噪声放大器 (LNA) - UWB 100 MHz 至 5000 MHz,35 dB 增益,+8 dB 输入功率,噪声系数 < 3 dB@2GHz。数量——2。b. RF 放大器/驱动器 - UWB 100 MHz 至 3000 MHz,35 dB 增益,+10 dB 输入功率,输出功率 15 dBm@2GHz,噪声系数 < 3 dB@2GHz。数量——2。c. Vivaldi 天线 – 1000 MHz 至 6500 MHz,SWR < 2.5:1 @2GHz,实现增益 > 7 dBi @2GHz,实现效率 > 90% @2GHz。数量 – 4。4. RF 脉冲接收器的脉冲整形电子设备和发射器的输入调节电子设备。5. GUI 用于控制和监视整个系统的状态。6. 系统应针对 500 ps FWHM UWB RF 脉冲创建(在 FPGA 中)、传输(驱动器)、接收(LNA)和检测(在 FPGA 中)进行开发和优化。4 招标类型 两种投标系统