预测性逆合合成一直是有机化学的长期目标,13 - 16,使用深神网络取得了明显的进步。17,18通过大量的有机反应(例如Scifinder 19和Reaxys)的商业数据库的可用性,这些机器学习成功得到了实现。目前尚不存在20种无机材料合成反应的商业数据库。但是,由于文献中已经有成千上万的成功材料综合报告,因此发表论文的文本挖掘合成食谱可以提供广泛的专家知识来源,以培训机器学习模型,以实现预测性无机材料合成。在2016年至2019年之间,I‡是劳伦斯·伯克利国家实验室Gerbrand Ceder研究小组的博士后研究员,并参加了31 782固体合成食谱的文本挖掘21和35 675基于解决方案的合成食谱22。在这里,我在尝试构建机器学习(ML)模型以从该数据集构建机器学习模型(ML)模型的回顾性帐户。顺便说一句,这个故事遵循Gartner的“炒作周期”,23,它通过(1)技术触发,(2)inded期望的峰值,(3)幻灭谷,(4)启蒙运动的斜坡,以及(5)生产力的平稳。这里的观点是我自己的,不一定是我的合着者在文本挖掘出版物中共享的。在这里,我们首先审查用于构建文本开采食谱数据库的自然语言处理策略。然后,我们根据数据科学的“ 4 Vs”评估了数据集,并表明数据集的数量,品种,真实性和速度的限制。尽管其中一些局限性源于文本挖掘中的技术问题,但我们认为这些局限性主要源于化学家过去如何探索和合成材料的社会,文化和人为偏见。24我们表明,在此文本挖掘数据集上训练的机器学习模型成功地捕获了化学家对材料合成的看法,但并没有对如何最好地合成新颖材料的实质性新的指导见解。另一方面,我们发现该数据集中最有趣的食谱实际上是异常的配方,即在固态合成中违反常规直觉的配方。这些异常的食谱也相对罕见,这意味着它们在uence回归或分类模型中不会显着。通过手动检查一些异常食谱,我们就固态反应的进行方式以及如何选择增强反应动力学和靶材料的选择性的前体提出了一个新的机械假设。这一假设推动了一系列高可见性的后续研究,25 - 28在经验上验证了我们假设的机制,这些机制是从文本开采的文献数据集中收集的。
免疫 - 增强冰沙我们的免疫系统可保护我们免受细菌,病毒,真菌和毒素(微生物制造的化学物质)的侵害。免疫系统由白细胞,抗体,淋巴系统,脾,胸骨和骨髓组成。因为我们的免疫系统的70%位于我们的肠道中,因此对消化系统的运作良好至关重要。,我们应该在冷静几个月之前建立免疫力,而感冒和流感更多,当时我们也会感到压力或过度劳累。吸烟,营养不良和酒精也包括我们的免疫系统。1大汤匙切碎的新鲜姜1汤匙希腊酸奶1杯切碎的婴儿菠菜1奇异果,切碎的1/3杯菠萝,切碎的¼杯蓝莓1茶匙生蜂蜜½杯水4冰块
1 KNAW 人文学科集群,阿姆斯特丹,荷兰;2 伦敦城市大学食品政策中心,伦敦,英国;3 谢菲尔德大学计算机科学系自然语言处理组,谢菲尔德,英国;4 卑尔根大学信息科学与媒体研究系,卑尔根,挪威;5 Meertens 研究所 (KNAW),阿姆斯特丹,荷兰;6 国立信息学研究所,千代田区,日本;7 南佛罗里达大学艺术与科学学院数学与统计学系,佛罗里达州圣彼得堡,美国;8 伦敦布鲁内尔大学工程、设计和物理科学学院能源未来研究所公平发展与复原力研究组,英国厄克斯布里奇;9 Text Mining Solutions Ltd.,英国约克;10 曼彻斯特大学科学与工程学院物理与天文系,英国曼彻斯特;11 圣保罗大学,巴西圣保罗,12 国际社会历史研究所 (KNAW),荷兰阿姆斯特丹
在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比
