有关此指南的内容关键数据保护概念生物识别识别我们如何证明我们遵守数据保护义务?我们如何合法处理生物特征数据?我们如何公平处理生物识别数据?准确性原理如何适用于生物识别数据?我们如何确保生物识别数据的处理是透明的?我们如何考虑对生物识别数据的权利请求?我们如何确保生物特征数据安全?
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
在过去的几十年中,描述化学结构的出版物数量稳步增加。然而,目前大多数已发表的化学信息在公共数据库中都无法以机器可读的形式获得。以更少的人工干预方式实现信息提取过程的自动化仍然是一个挑战——尤其是化学结构描述的挖掘。作为一个利用深度学习、计算机视觉和自然语言处理方面的最新进展的开源平台,DECIMER.ai(化学图像识别深度学习)致力于自动分割、分类和翻译印刷文献中的化学结构描述。分割和分类工具是同类中唯一公开可用的软件包,光学化学结构识别 (OCSR) 核心应用程序在所有基准数据集上都表现出色。这项工作中开发的源代码、训练模型和数据集均已在许可下发布。DECIMER Web 应用程序的一个实例可在 https://decimer.ai 获得。
• 按时间和日期、管辖区、命中类型、用户、地理围栏等进行超快速搜索和过滤 • 在现场检测到热门列表匹配时管理电子邮件和/或短信警报 • 创建和发布自定义热门列表以供整个组织跨平台使用 • 轻松将报告数据导出为 CSV 以用于其他数据库平台 • 安全、可靠且有保障。即时部署。高度可扩展 • 与 Aero Ranger Capture、Checkpoint 和 Chariot 系统完全集成
《欧洲AI法案》(2024/1689)自2024年8月1日起就一直有效,并规范了欧盟(EU)的人工智能(AI)的使用。AI法案具有基于风险的方法。因此,从2025年2月2日起,禁止某些带来不可接受风险的AI系统。由《 AI法案》的主管来解释如何以监督目的解释禁令。为了在荷兰为此做准备,Autoriteit Persoonsgevens(AP)询问感兴趣的各方(公民,政府,企业和其他组织)及其代表寻求需求,信息和见解。我们可以使用所有输入来考虑对禁止的AI系统的进一步澄清。2024年9月27日,AP发布了第一个关于AI法案前两项禁令的意见。在第二次呼吁输入中,我们解决了第六次禁止:在工作场所或教育机构领域的情感识别系统(禁令F)。稍后,我们将要求对其他禁令进行输入。本文档在通过一组问题要求(附加)输入时概述了这些禁止的AI系统的特定标准。可以提交捐款,直到2024年12月17日。AP根据其作为算法和AI的协调主管的角色来呼吁输入。为了完成这项新任务,在AP内建立了算法监督协调部(DCA)。荷兰政府目前正在为《 AI法案》的国家监督当局进行正式指定。此呼吁的投入还与为支持《 AI法案》禁止的AI系统的未来监督进行的准备工作保持一致。
使用脑电图信号的认知载荷识别(CLR)近年来经历了显着的进步。但是,当前的载荷范式通常依赖于简单的认知任务,例如算术计算,无法充分复制现实世界情景和缺乏适用性。本研究随着时间的推移探讨了模拟的飞行任务,以更好地反映运行环境并研究多个负载状态的时间动态。36名参与者以执行模拟飞行任务,而低,中和高的认知负荷水平不同。在整个实验中,我们从三个课程,前后静止状态的脑电图数据,主观评分和客观绩效指标中收集了脑电图负载数据。然后,我们采用了几种深卷卷神经网络(CNN)模型,利用RAW EEG数据作为模型输入,以六个分类设计评估认知负载水平。研究的关键发现包括(1)静止状态和疲劳后脑电图数据之间的显着区别; (2)与更复杂的CNN模型相比,浅CNN模型的出色性能; (3)随着任务的进行,CLR的时间动态下降。本文为在不同个体的复杂模拟任务中评估认知状态的潜在基础。
。CC-BY-NC 4.0 国际许可(未经同行评审认证)是作者/资助者,其已授予 bioRxiv 永久展示预印本的许可。它是
收到:2023年9月18日;接受:2023年12月25日摘要通过听觉,视觉和文本提示识别多方面情绪的研究是一个快速发展的跨学科领域,涵盖了心理学,计算机科学和人工智能领域。本文研究了用于隔离和识别这些模式中复杂情绪状态的方法的范围,目的是描述进步并确定未来研究的领域。在声音领域中,我们探索了信号处理和机器学习技术的进展,从而有助于从人声弯曲和音乐安排中提取细微的情感指标。视觉情绪识别是通过面部识别算法,肢体语言分析以及上下文环境信息整合的有效性来评估的。使用自然语言处理技术检查基于文本的情感识别,以感知书面语言的情感和情感内涵。此外,本文考虑了这些不同情绪数据来源的融合,考虑了构建能够解释多模式输入的连贯模型时所面临的挑战。我们的方法涵盖了最近研究的荟萃分析,评估了各种方法的有效性和精度,并确定了常见的指标进行评估。结果表明,偏爱深度学习和混合模型,以利用多种分析技术的优势来提高识别率。然而,诸如情感的主观性质,表达中的文化差异以及广泛的注释数据集的必要性持续存在的挑战,这是重大障碍。总而言之,这篇综述倡导了更多细微的数据集,增强的跨学科合作以及一个道德框架来管理情绪识别技术的实施。这些技术的潜在应用是广泛的,从医疗保健到娱乐,并且需要一致的努力来完善和道德将情感识别纳入我们的数字互动中。关键字:多模式情绪,融合,机器学习,深度学习,回归,CNN,RNN。