当前的大多数动作识别算法都是基于堆叠多个卷积,汇总和完全连接层的深网。虽然在文献中广泛研究了卷积和完全连接的操作,但处理动作识别的合并操作的设计,在行动类别中具有不同的时间颗粒状来源,但受到相对较少的关注,并且主要依赖于最大值或平均操作的解决方案。后者显然无能为力,无法完全表现出动作类别的实际时间粒度,从而构成了分类的瓶颈。在本文中,我们引入了一种新型的分层池设计,该设计在动作识别中捕获了不同级别的时间粒度。我们的设计原理是粗到精细的,并使用树结构网络实现;当我们自上而下时,当我们穿越该网络时,汇总操作的不变性越来越少,但及时坚决且本地化。通过解决一个约束的最小化问题来获得该网络中最适合给定的基础真相的操作组合(最适合给定的地面真相),该问题的解决方案对应于捕获全球层次层次合并过程中每个级别(及其时间粒度)贡献的权重分布。除了有原则性和扎根,提出的分层池也是视频长度和分辨率不可知的。对UCF-101,HMDB-51和JHMDB-21数据库进行挑战的广泛实验证实了所有这些陈述。关键字。多重聚合设计2流网络行动cop-nition
多标签属性识别是计算机视觉中的一项关键任务,应用程序范围在不同的领域。这个问题通常涉及检测具有多个属性的对象,需要具有高级差异和精细的特征提取的复杂模型。对象检测和属性识别的集成通常依赖于诸如双阶段网络之类的方法,其中准确的预测取决于高级特征提取技术,例如感兴趣的区域(ROI)池。为了满足这些要求,在统一框架中既可以实现可靠的检测和属性进行分类,这是必不可少的。这项研究介绍了一个创新的MTL框架,旨在将多人属性识别(MPAR)纳入单模型体系结构中。命名为MPAR-RCNN,该框架通过空间意识到的,共享的骨干,促进效果和准确的多标签预测来符合对象检测和属性识别任务。与传统的基于快速区域的卷积神经网络(R-CNN)不同,该网络(R-CNN)分别管理人的检测和归因于双阶段网络的分类,MPAR-RCNN体系结构在单个结构中优化了两个任务。在更宽的(用于事件识别的Web图像数据集)数据集上进行了验证,提出的模型展示了对当前最新ART(SOTA)体系结构的改进,展示了其在推进多标签属性识别方面的潜力。
DNA 纤维测定是一组技术,可在玻璃支持物上显示拉伸至接近轮廓长度的单个基因组 DNA 分子,以研究体内 DNA 复制和 DNA 损伤反应,以及复制与特定 DNA 序列或特定蛋白质的共定位(Chastain 等人,2006 年;Cohen 等人,2010 年;Datta 和 Brosh,2022 年;Herrick 和 Bensimon,1999 年;Jackson 和 Pombo,1998 年;Norio 和 Schildkraut,2001 年;Quinet、Carvajal-Maldonado、Lemacon 和 Vindigni,2017 年;Sidorova、Li、Schwartz、Folch 和 Monnat,2009 年)。DNA 纤维测定于上世纪 90 年代末推出,已成为实验室在分子细节上研究这些过程的必备工具。它们是唯一广泛可用、经济且易于采用的方法,能够在单个复制叉的水平上提供有关 DNA 复制及其相关事件在细胞内发生方式的定量信息,尽管需要注意的是,基于纳米孔测序的技术正在开发中,以提供类似的分辨率水平(Boemo,2021 年;Hennion 等人,2020 年;Hennion、Theulot、Arbona、Audit 和 Hyrien,2022 年)。 DNA 纤维分析的传播推动了过去十年来人类和动物细胞复制应激反应研究的惊人进步,以及发现了支持正常细胞复制叉而在癌症中发生改变的多种途径,这些途径既导致了化学敏感性,也导致了获得性化学耐药性(Berti 等人,2013 年;Berti、Cortez 和 Lopes,2020 年;Chaudhuri 等人,2016 年;Cong 等人,2021 年;Vindigni 和 Lopes,2017 年)。
可持续的金融欺诈检测包括在金融领域欺诈行为识别中使用可行且得体的表现。信用卡容易受到网络威胁,从而导致信用卡欺诈。欺诈者通过非法获取信用卡信息进行不诚实的行为,这种行为会给用户和公司带来经济损失。目前,深度学习 (DL) 和机器学习 (ML) 系统被部署在金融欺诈检测中,因为它们具有制造出发现欺诈交易的强大设备的功能。本文提出了一种基于云计算的财务管理财务数据分析,使用深度强化学习模型 (FDAFM-CCDRLM)。FDAFM-CCDRLM 模型的主要目的是改进经济管理中财务数据的分析。首先,在数据规范化阶段采用最小-最大规范化将输入数据转换为合适的格式。此外,提出的 FDAFM-CCDRLM 模型为特征选择过程的子集设计了一种黑翅风筝算法 (BKA)。对于分类过程,我们执行了双深度 Q 网络 (DDQN) 算法。最后,我们采用基于人工蜂群 (ABC) 算法的超参数范围方法来改进 DDQN 模型的分类结果。FDAFM-CCDRLM 系统的实验评估可以在基准数据库上进行测试。广泛的成果凸显了 FDAFM-CCDRLM 方法对金融数据分析分类过程的重要解决方案
成年后,人类从稀疏的视觉显示中迅速识别物体,并在其外观上遇到重大干扰。实现强大的识别能力所需的最小条件是什么?这些能力何时会发展?要回答这些问题,我们研究了儿童对象识别能力的上限。我们发现,在稀疏且干扰的观看条件下,以100 ms(前向和向后掩盖的速度)成功地识别了3岁的儿童。相比之下,具有生物学知情属性或为视觉识别进行优化的范围计算模型未达到儿童级表现。模型只有与儿童能够体验更多的对象示例相匹配的。这些发现在没有丰富经验的情况下突出了人类视觉系统的鲁棒性,并确定了建造生物学上合理的机器的重要发育限制。
成年后,人类从稀疏的视觉显示中迅速识别物体,并在其外观上遇到重大干扰。实现强大的识别能力所需的最小条件是什么?这些能力何时会发展?要回答这些问题,我们研究了儿童对象识别能力的上限。我们发现,在稀疏且干扰的观看条件下,以100 ms(前向和向后掩盖的速度)成功地识别了3岁的儿童。相比之下,具有生物学知情属性或为视觉识别进行优化的范围计算模型未达到儿童级表现。模型只有与儿童能够体验更多的对象示例相匹配的。这些发现在没有丰富经验的情况下突出了人类视觉系统的鲁棒性,并确定了建造生物学上合理的机器的重要发育限制。
4美国加利福尼亚州斯坦福大学的神经外科系,5神经科学计划,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana,伊利诺伊州Urbana,美国伊利诺伊州伊利诺伊州乌尔巴纳大学的人工智能创新中心,6,伊利诺伊州工程学院,伊利诺伊州,伊利诺伊州乌里诺斯大学,伊利诺伊州乌里诺斯·塞拉纳,工程学院。伊利诺伊州Urbana-Champaign,伊利诺伊州乌尔巴纳大学,伊利诺伊州乌尔巴纳大学工程学,机械科学与工程学,美国伊利诺伊州乌尔巴纳 - 欧巴纳大学分子与综合生理学系8伊利诺伊州乌尔巴纳,美国4美国加利福尼亚州斯坦福大学的神经外科系,5神经科学计划,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana,伊利诺伊州Urbana,美国伊利诺伊州伊利诺伊州乌尔巴纳大学的人工智能创新中心,6,伊利诺伊州工程学院,伊利诺伊州,伊利诺伊州乌里诺斯大学,伊利诺伊州乌里诺斯·塞拉纳,工程学院。伊利诺伊州Urbana-Champaign,伊利诺伊州乌尔巴纳大学,伊利诺伊州乌尔巴纳大学工程学,机械科学与工程学,美国伊利诺伊州乌尔巴纳 - 欧巴纳大学分子与综合生理学系8伊利诺伊州乌尔巴纳,美国
在计算机视觉中,视频流中人体动作的识别是一项具有挑战性的任务,其主要应用领域包括脑机接口和监控。深度学习最近取得了显著的成果,但在实践中却很难使用,因为它的训练需要大量数据集和专用的耗能硬件。在这项工作中,我们提出了一种光子硬件方法。我们的实验装置由现成的组件组成,并实现了一个易于训练的循环神经网络,该网络有 16,384 个节点,可扩展到数十万个节点。该系统基于储层计算范式,经过训练,可以使用原始帧作为输入,或者使用定向梯度直方图算法提取的一组特征,从 KTH 视频数据库中识别六种人体动作。我们报告的分类准确率为 91.3%,与最先进的数字实现相当,同时与现有硬件方法相比,处理速度更快。由于光子架构提供的大规模并行处理能力,我们预计这项工作将为实时视频处理的简单可重构和节能的解决方案铺平道路。
本文的资金声明是不正确的。正确的资金声明如下:这项研究得到了上海文化和教育融合项目(中国)以及教育部(中国)的意识形态和政治演示课程的支持。作者和PLOS一位编辑希望告知读者,[1]的参考文献6于2024年8月10日[2,3]撤回,而本文[1]正在审查中。在引言中引用了缩回的条款[2],并且它的撤回似乎不会影响本文的可靠性或有效性[1]。我们拒绝在发布之前确定这个问题。
对局部皮质折叠模式的研究表明,其与精神疾病以及认知功能存在关联。尽管目前已有可视化 3D 皮质折叠的工具,但手动分类局部脑沟模式仍然是一项耗时且繁琐的任务。事实上,折叠的 3D 可视化有助于专家识别不同的脑沟模式,但折叠变异性非常高,以至于区分这些模式有时需要定义复杂的标准,这使得手动分类变得困难且不可靠。但是,评估这些模式对皮质功能组织的影响可能会受益于对大型数据库的研究,尤其是在研究罕见模式时。本文提出了几种自动分类折叠模式的算法,以便扩展和确认此类大型数据库上的形态学研究。提出了三种方法,第一种方法基于支持向量机 (SVM) 分类器,第二种方法基于非局部图像块估计器评分 (SNIPE) 方法,第三种方法基于 3D 卷积神经网络 (CNN)。这些方法足够通用,适用于各种折叠模式。它们在两种目前没有自动识别方法的模式上进行了测试:前扣带皮层 (ACC) 模式和电源按钮标志 (PBS)。这两种 ACC 模式几乎同样存在,而 PBS 在一般人群中是一种特别罕见的模式。提出的三种模型在 ACC 模式分类中实现了大约 80% 的平衡准确率,在 PBS 分类中实现了大约 60% 的平衡准确率。基于 CNN 的模型由于其执行速度快,更适合 ACC 模式分类。然而,基于 SVM 和 SNIPE 的模型在管理 PBS 识别等不平衡问题方面更有效。