摘要 2016 年,根据现行良好生产规范开发和生产了一种 SARS-CoV 受体结合域 (RBD) 重组蛋白。该蛋白在 Alhydrogel® 上配制时称为 RBD219-N1,在用 SARS-CoV(MA15 毒株)同源病毒攻击小鼠后,诱导出高水平中和抗体和保护性免疫,且免疫病理学极小。我们研究了已发表的证据,以支持 SARS-CoV RBD219-N1 是否可以重新用作针对冠状病毒传染病 (COVID)-19 的异源疫苗。我们的研究结果包括 SARS-CoV 患者恢复期血清可以中和 SARS-CoV-2 的证据。此外,对已发表的研究进行了回顾,这些研究使用针对 SARS-CoV RBD 产生的单克隆抗体 (mAb) 在体外中和 SARS-CoV 病毒,发现其中一些 mAb 与 RBD 内的受体结合基序 (RBM) 结合,而另一些 mAb 与 RBD 内该区域以外的域结合。这些信息具有相关性,并支持开发针对 COVID-19 的异源 SARS-CoV RBD 疫苗的可能性,特别是因为发现 SARS-CoV 和 SARS-CoV-2 刺突和 RBD 域之间的整体高氨基酸相似性 (82%) 并未反映在 RBM 氨基酸相似性 (59%) 中。然而,RBM 外区域的高序列相似性 (94%) 为两种病毒之间保守的中和表位提供了潜力。
此预印本的版权所有者于 2020 年 6 月 19 日发布此版本。;https://doi.org/10.1101/2020.06.18.160655 doi: bioRxiv preprint
融合蛋白在大肠杆菌重组蛋白的生产中起着重要作用。它们主要用于细胞质表达,因为它们可以设计为增加目标蛋白的溶解度,然后可以通过亲和层析轻松纯化。相反,融合蛋白通常不包含在用于周质生产的构建体设计中。相反,插入信号序列以将蛋白质转运到周质中,并添加 C 端 his-tag 以进行后续纯化。我们的研究小组提出从欧洲亚硝化单胞菌周质中分离的小金属结合蛋白 (SmbP) 作为一种新的融合蛋白,用于在大肠杆菌的细胞质或周质中表达重组蛋白。SmbP 还允许通过使用 Ni(II) 离子的固定化金属亲和层析进行纯化。最近,我们通过将 SmbP 标记蛋白的天然信号肽与取自果胶酸裂解酶 B (PelB) 的信号肽进行交换,优化了 SmbP 标记蛋白的周质生产,从而大幅增加了蛋白产量。在这项工作中,我们表达并纯化了 PelB-SmbP 标记的可溶性生物活性人类生长激素 (hGH),并获得了迄今为止报道的该蛋白的最高周质产量。在 Nb2-11 细胞上测试的其活性相当于 50 ng mL 1 的商业生长激素。因此,我们强烈建议使用 PelB-SmbP 作为蛋白标签,用于大肠杆菌周质中 hGH 或其他可能的目标蛋白的表达和纯化。
1. 兽药名称 Vectormune FP ILT+AE 鸡用注射用冻干粉和悬浮液溶剂 2. 定性和定量组成 每剂(0.01 毫升)含: 活性物质: 表达膜融合蛋白和禽传染性喉气管炎病毒衣壳蛋白的活重组鸡痘病毒(rFP-LT) 2.7 至 4.5 log10 TCID50* 禽脑脊髓炎病毒,Calnek 1143 株(AE) 2.7 至 4.5 log10 EID50** * 50% 组织培养感染剂量 ** 50% 蛋感染剂量 有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 注射用冻干粉和悬浮液溶剂。冻干粉:白褐色。溶剂:透明蓝色液体。 4.临床特点 4.1 适用物种 鸡 4.2 使用指征,指定适用物种 用于对8至13周龄的鸡进行主动免疫,以减少鸡痘引起的皮肤病变、禽传染性喉气管炎引起的临床症状和气管病变以及防止禽脑脊髓炎引起的产蛋损失。 免疫开始时间 鸡痘和禽传染性喉气管炎:接种后3周 禽脑脊髓炎:接种后20周 免疫持续时间: 鸡痘:接种后34周。 禽传染性喉气管炎和禽脑脊髓炎:接种后57周。 4.3 禁忌症 无。
边缘无形体是全球分布的最普遍的蜱传牲畜病原体。牛无形体病对养牛业构成了重大威胁。通过接种脾切除小牛产生的活中心无形体疫苗,可以预防流行地区的无形体病爆发。由于中心无形体活疫苗可携带其他病原体并导致成年牛患病,因此研究工作致力于开发安全的重组亚单位疫苗。先前的研究发现,边缘无形体 IV 型分泌系统 (T4SS) 的亚优势蛋白和亚优势延伸因子-Tu (Ef-Tu) 参与了用边缘无形体外膜 (OM) 免疫的牛对实验性攻击的保护性免疫。本研究评估了在大肠杆菌中克隆和表达的重组 VirB9.1、VirB9.2、VirB10、VirB11 和 Ef-Tu 蛋白赋予的免疫原性和保护性。将 20 头公牛随机分成 4 组 (G),每组 5 头。G1 和 G2 组的牛分别用 50 μ g 重组蛋白与 Quil A ® 或 Montanide ™ 佐剂的混合物进行免疫。G3 和 G4 (对照) 组的牛分别用 Quil A 和 Montanide 佐剂进行免疫。牛每隔三周进行四次免疫,并在第四次免疫后 42 天用 10 7 A . marginale 寄生红细胞进行攻击。攻击后,所有牛均出现临床症状,红细胞压积显著下降,寄生红细胞显著增加 (p < 0.05),需要用土霉素治疗以防止死亡。免疫组诱导的 IgG2 水平与观察到的缺乏保护无关。需要额外的策略来评估这些蛋白质的作用及其在开发有效疫苗中的潜在效用。
此版本的版权所有者于 2020 年 2 月 21 日发布。;https://doi.org/10.1101/2020.02.17.951939 doi: bioRxiv preprint
此药品需要接受额外监控。这将使我们能够快速识别新的安全信息。要求医疗保健专业人员报告任何疑似不良反应。有关如何报告不良反应,请参阅第 4.8 节。 1. 药品名称 Shingrix 注射用粉末和混悬液 带状疱疹疫苗(重组,佐剂) 2. 定性和定量组成 重构后,一剂(0.5 毫升)含有: 水痘带状疱疹病毒 1 糖蛋白 E 抗原 2,3 50 微克 1 水痘带状疱疹病毒 = VZV 2 以 AS01 B 佐剂形式含有: 植物提取物 Quillaja saponaria Molina,级分 21 (QS-21) 50 微克 3 源自明尼苏达沙门氏菌的-O-去酰基-4'-单磷酰脂质 A (MPL) 50 微克 3 通过重组 DNA 技术在中国仓鼠卵巢 (CHO) 细胞中产生的糖蛋白 E (gE) 有关辅料的完整列表,请参见第 6.1 节。 3. 药物形式 注射用粉末和混悬液。粉末为白色。混悬液为无色至淡褐色乳白色液体。 4. 临床特点 4.1 治疗指征 Shingrix 适用于预防 50 岁或以上成人的带状疱疹 (HZ) 和带状疱疹后神经痛 (PHN)(见第 5.1 节)。Shingrix 的使用应符合官方建议。 4.2 用法和用量 用法 初始疫苗接种计划包括两剂,每剂 0.5 毫升:第一剂,2 个月后第二剂。如果需要灵活调整疫苗接种计划,第二剂可以在第一剂后 2 至 6 个月注射(见第 5.1 节)。尚未确定初始疫苗接种计划后是否需要加强剂量(见第 5.1 节)。对于之前接种过减毒活 HZ 疫苗的个体,可以按照相同的时间表接种 Shingrix(见第 5.1 节)。
表达和纯化的重组蛋白在生物学和生物医学科学中高度使用。由于缺乏翻译后修饰(PTM)系统以及许多重组蛋白的不溶性,用于蛋白质表达和纯化的传统宿主生物,尤其是大肠杆菌,用于蛋白质表达和纯化。酵母蛋白生产系统一直是生产生物药物蛋白,蛋白质复合物和翻译后修饰蛋白的宝贵工具。在这里,我们使用半乳糖诱导系统描述了酿酒酵母中详细的蛋白质表达和纯化方案。发芽的酵母菌具有快速的细胞生长,可以达到高密度,从而产生具有高蛋白质产量的快速,简单的真核蛋白质生产平台。
在本研究中,我们使用 1973 年至 2012 年期间美国专利商标局 (USPTO) 的专利申请来分析技术发展模式。我们的研究重点是专利文件中技术领域的组合及其随时间的演变,这可以建模为扩散过程。通过关注过程的组合维度,我们获得了与专利计数互补的见解。我们的结果表明,技术知识网络的密度增加,并且大多数技术领域随着时间的推移变得更加相互关联。我们发现大多数技术都遵循类似的扩散路径,可以将其建模为 Logistic 或 Gompertz 函数,然后可以将其用于估计成熟时间(定义为特定技术的扩散过程放缓的年份)。这使我们能够确定一组有望在未来十年内成熟的有前途的技术。我们的贡献代表着评估传播和相互影响在新技术开发中的重要性的第一步,这可以支持有针对性、有效的研究与创新和产业政策的设计。
在本研究中,我们使用 1973 年至 2012 年期间美国专利商标局 (USPTO) 的专利申请来分析技术发展模式。我们的研究重点是专利文件中技术领域的组合及其随时间的演变,这可以建模为扩散过程。通过关注过程的组合维度,我们获得了与专利计数互补的见解。我们的结果表明,技术知识网络的密度增加,并且大多数技术领域随着时间的推移变得更加相互关联。我们发现大多数技术都遵循类似的扩散路径,可以将其建模为 Logistic 或 Gompertz 函数,然后可以将其用于估计成熟时间(定义为特定技术的扩散过程放缓的年份)。这使我们能够确定一组有望在未来十年内成熟的有前途的技术。我们的贡献代表着评估传播和相互影响在新技术开发中的重要性的第一步,这可以支持有针对性、有效的研究与创新和产业政策的设计。