格陵兰岛在公元86年至1997年的2厘米分辨率下,年度为NS1-2011年年表。Pangea,272 https://doi.org/10.1594/pangaea.940553; Colle Gnifetti:Sigl,Michael;艾布拉姆(Nerilie J)加布里里(Jacopo);詹克(Jenk),273西奥(Theo M);奥斯蒙特,迪米特里; Schwikowski,Margit(2018):Black Carbon(RBC),Bismuth,Lead和274个从1741年至2015年的公元174个年度记录,来自Colle Gnifetti Ice Core(瑞士/意大利阿尔卑斯山)。Pangea,275 https://doi.org/10.1594/pangaea.894785;山Elbrus:doi:10.5194/acp-17-3489-2017;通过加拿大极地数据目录:TTPS://www.po- 277 lardata.ca/pdcsearch/pdcsearch.jsp?可以根据要求从通讯作者那里获得后处理278个代码。279
线束是现代汽车车辆中电子系统的必不可少的硬件。随着汽车行业向电力和自动驾驶的转变,越来越多的汽车电子设备负责能源传输和关键安全功能,例如操纵,驾驶员援助和安全系统。此范式转移从安全角度来看,对汽车线束的需求更大,并强调了在车辆中高质量的线束组件的更重要性。但是,熟练的工人仍然手动执行电线线束组件的大多数操作,并且某些手动过程在质量控制和人体工程学方面都是有问题的。行业对提高竞争力并获得市场份额的需求也持续存在。因此,需要确保组装质量,同时提高人体工程学并优化人工成本。由机器人或人类机器人协作完成的机器人组装,是实现越来越苛刻的质量和安全性的关键推动力,因为它可以使比完全手动操作更具复制,透明和可理解的过程。然而,由于可变形物体的灵活性,在实际环境中,机器人的汇编组装在实际环境中具有挑战性,尽管在简化的工业结构下提出了许多初步的自动化解决方案。先前的研究E↵Orts提出了使用计算机视觉技术来促进线束组件的机器人自动化,从而使机器人能够更好地感知和操纵灵活的线束。本文介绍了针对机器人线束组件提出的计算机视觉技术的概述,并得出了需要进一步研究的研究差距,以促进更实用的机器人丝带线束。
由于电池容量有限,能源效率有效的导航构成了电动汽车的重要挑战。我们采用贝叶斯的方法来对路段的能源消耗进行建模,以进行有效的导航。为了学习模型参数,我们开发了一个在线学习框架,并研究了几种探索策略,例如汤普森采样和上限限制。然后,我们将我们的在线学习框架扩展到多代理设置,在该设置中,多个车辆可适应和学习能量模型的参数。通过分析批处理反馈下的算法,我们分析了汤普森采样,并在单位代理和多代理设置中建立了严格的遗憾界限。最后,我们通过在几个现实世界的城市路网络上进行实验来演示方法的性能。
锂离子电池(ALIBS)有望在日益环保的叙述中提供具有成本效益和安全的能源存储。此外,减轻围绕传统液化液中关键原材料的问题加强了与这种理想的一致性。在这里,我们深入研究了佩利烯-3,4,9,10-四羧酸列酰亚胺(PTCDI)的电化学,并评估其作为abibs的有机阳极活性材料的潜力。我们发现,与有机溶剂相比,尽管有略有不同的方式,但与中等浓缩的水性电解质相比,li +可逆地(DE)li +。此外,在容量,能力保留,速率性能,库伯效率和自我释放方面的半细胞电化学性能确实令人满意,其中使用高电压锂氧化物氧化物(LMO)的概念证明是ableib,and> 70 wh kg-1(ptcdi + lmo)和一个平均水平和平均水平。1.5 V.这些发现的目的是用更稀释的水解物进一步鼓励有机氧化还原材料研发,有可能为更绿,更可持续的能源景观铺平道路。
推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
逐步淘汰航运业的化石燃料对于减少温室气体排放至关重要。基于可再生能源的合成燃料是可持续海运业的一个有前途的选择,可再生甲醇是最广泛考虑的能源载体之一。然而,可再生甲醇的供应仍然有限,而且与传统燃料相关的成本明显高于传统燃料,这也是因为燃料合成必须依赖二氧化碳作为资源。通过使用船上碳捕获,可以避免燃烧过程中二氧化碳的释放,这种闭式循环减少了对碳源的需求。本文通过分析使用内燃机和相连的燃烧前和燃烧后碳捕获技术的整体船舶能源系统来研究这种情况。通过建立一个混合整数优化框架来优化船舶推进系统的设计和运行,研究了这些技术对完全可再生能源系统的技术经济性能的影响。所选案例研究的推进需求包括在波罗的海运营的渡轮的典型运行概况。将捕获情况与仅基于可再生甲醇的系统进行比较,可以发现封闭式碳循环系统具有显著的成本优势。基线情景的年成本降低了近 20%,燃烧后情况下的总捕获率为 90%,燃烧前情况下的总捕获率为 40% 左右。广泛的敏感性分析表明,这些成本优势在各种技术和经济边界条件下都具有稳健性。在燃烧前情况下,工艺热需求减少与发动机热供应增加相结合可能会使捕获率超过 90%。结果表明,将可再生燃料与船上碳捕获相结合可以为成本效益高、可持续的航运创造机会。
本文旨在提出一种配备储能装置的电网形成转换器与水力发电机之间的协调控制策略,以促进未来电力系统中转换器的频率支持。这样,就可以利用转换器系统的快速动态特性,同时最大限度地减少与转换器系统相关的储能要求。电网形成转换器频率控制器的拟议调整标准有助于转换器系统与水力发电机之间的自然协调。将所提出的控制策略的有效性与文献中现有的传统下垂方法进行了比较。最后,使用 PSCAD 中的详细时域仿真模型验证了分析结果。