摘要:在本文中,我们研究了在回收的聚乙烯(R-PE)中添加木材作为填充剂的影响,鉴于其在3D打印中的潜在应用。通过熔体混合制备的复合材料以在化合物,动态旋转流变学和红外光谱期间进行的扭矩测量来表征。数据表明,木材的引入会导致粘度增加,并在化合物期间粘稠。R-PE在高达180℃的温度下似乎是稳定的,而在较高温度下,材料显示出一种流变响应,其特征是延时粘弹性模量,这表明由交联反应控制的热降解。化合物(木材在wt中最多可加载50%)还显示了最高180°C的温度下的热稳定性。R-PE基质的粘弹性行为和红外光谱表明,由于该过程,大分子结构中存在分支。尽管添加木材颗粒会确定粘弹性模量增加,但即使对于最高的木材浓度,也没有显示出固体样的粘弹性反应。这种行为由于兼容性差和两阶段之间的界面粘附较弱,但是鉴于常见的加工技术是挤出或注射成型,这是有希望的。
在马来西亚产生的年度聚合物废物已大大增加到超过100万吨。各种工业聚合物废物流所需的延长降解期是一个重大关注的问题,其中有些人需要长达1000年才能充分降级。追求类似的环境问题,使用巴库桩作为砂拉越轻量化结构的支持,包括排水系统,道路,下水道和其他与水相关的结构,由于森林地区的侵蚀而成为一个问题。Bakau森林砍伐和聚合物废物问题都引起了重大环境和全球关注。减轻红树林降解和聚合物废物的不可生物降解性质的想法导致了替代解决方案的概念化,从而利用可回收的热塑性聚合物桩用于取代Bakau Pil,从而在土木工程建筑项目中为轻量级的结构提供支持。因此,对聚合物桩进行研究以检查其机械性能,形式(V)和再生(R)热塑性聚合物。在此
在KSA的Jubail公司的P Lant上,首先是由高级再生塑料制成的KSASABIC,NAPCO和FONTE认证的圆形SABIC®PE
• 公司 A 是法律要求注册的公司。公司 A(受监管容器或包装产品的品牌所有者)有责任确保从公司 B 采购合规材料或使用其他可以满足标准的公司。最后,公司 A 将其产品分销给公司 C,使公司 A 成为受监管容器或包装产品的品牌所有者和分销商,这满足了法律中制造商定义中的标准 2 和 3。此外,公司 A 正在制造饮料产品(假设包装在塑料饮料容器中);因此,制造商定义中的标准 1 不适用。2.公司 A 经营饮料生产设施。公司 A 从
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
为此,使用了不同的化学分析方法。这些包括Kappa数量测量值,UV-VIS和FTIR。为该项目选择了九种不同类型的牛仔裤,一条纱线,三种原材料(棉,宠物和弹性)和两种纯染料(靛蓝和黑色硫染料)。KAPPA数量测量结果的结果表明,只有使用原始的Kappa编号方法在25度处使用蓝色牛仔裤,蓝色纱线和黑色牛仔裤和测量。但是,当手动完成相同的过程并且温度增加到70度C时,几乎所有材料C都可以被漂白并进行测量。因此,结论是该方法可以是成功的定量方法。但是,需要进一步开发温度校正方程,以便能够量化确切的染料量。还将Kappa数与吸光度因子(即来自UV-VIS结果的K值。可以看到蓝色牛仔裤,蓝色纱线和黑色牛仔裤的相关性。因此,UV-VIS方法也可能是量化纺织品中染料的可能方法。用于定性分析,使用了FTIR。结果表明,可以通过将所得FTIR光谱与参考光谱进行比较来识别原材料。对于牛仔裤和纱线材料,为蓝色牛仔裤,蓝色纱和黑色牛仔裤确定了靛蓝染料。但是,对于其他材料,染料的量太低,无法得出有关化学结构的结论。
目前,许多可回收的塑料都无法使用,因为它们的组成很难确定,因此在垃圾填埋场中被丢弃或燃烧。。当前的常规分析方法一次仅一次性塑料的量实际上只有很少的塑料(<0.1 g)。该样本量不足以代表大量的再生塑料,在这些塑料中,局部种类的聚合物可能会有很大差异,如图1.²Veridis所示,它开发了一种热分析方法,用于分析称为MADSCAN的聚合物(Massive DSC分析),该方法通过增加最高50 g的样本大小来解决此问题。当前的设置为30克。这项研究的目的是使用MADSCAN技术构建合适的数据库,该数据库可用于使用拟合分析来量化未知的聚合物样品。..图1:由局部不同聚合物组成的再生塑料示例。⁴
Aurubis AG 是全球领先的有色金属供应商,也是全球最大的铜回收商之一。该公司将复杂的金属精矿、废金属、有机和无机含金属回收材料以及工业残渣加工成最高品质的金属。Aurubis 每年生产超过 100 万吨阴极铜,并由此生产出各种产品,例如由铜和铜合金制成的盘条、连铸形状、型材和扁平轧制产品。Aurubis 还生产许多其他金属,包括贵金属、硒、铅、镍、锡和锌。其产品组合还包括硫酸和硅酸铁等其他产品。
此外,玻璃纤维增强塑料 (GFRP) 和其他复合材料物品(例如船舶、飞机、汽车零件、风力涡轮机叶片等)的使用越来越多,导致废物积累率不断增长。通常情况下,GFRP 物品不易回收,因为组成材料基质的热固性树脂在固化过程之后不能轻易与增强纤维分离。因此,它们的生产、使用和报废遵循线性经济方案。目前,还没有针对这些材料的经济高效、环保或实用的回收解决方案。大多数情况下,它们只是被丢弃在垃圾填埋场;有时,为了节省处理成本,它们被非法遗弃在环境中,导致因纤维释放而造成的污染和潜在的健康问题。仅在欧洲,每年就有约 55 000 吨 GFRP 被送往垃圾填埋场 [9,10];尽管如此,欧盟还是设定了目标,到 2030 年,通过采用创新的回收/再利用方法,将最终进入垃圾填埋场的垃圾量减少 10%。[11]
摘要:为研究再生塑料颗粒对混凝土物理力学性能的影响,设计了掺量为0、3%、5%和7%(以重量计)的再生塑性混凝土,测定了其抗压强度、劈拉强度以及养护过程中吸水引起的质量变化。研究结果表明:在混凝土中加入再生塑料可以提高混凝土的强度,其中,再生塑料掺量为5%时混凝土的抗压强度和劈拉强度最好。随着再生塑料掺量的增加,早期强度的发展速度变慢。硅烷偶联剂对再生塑性混凝土强度有积极作用,混凝土在早期吸水饱和阶段已基本完成,硅烷偶联剂的掺入使得混凝土的孔隙率降低,混凝土的吸水性能变差。通过总结再生塑性混凝土的物理力学性能可以发现,再生塑料的掺入对于混凝土材料改性是一种有效的方法。在控制再生塑料掺量的情况下,掺再生塑料骨料混凝土强度能够满足工程要求。