获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 - 在医疗保健记录中保护患者隐私是重中之重,并且修订是一种常用的方法,用于模糊文本中直接识别信息。基于规则的方法已被广泛使用,但是它们的精度通常较低,导致文本过度偿还,并且常常不足以适应不可遵循的人民健康信息的非标准化或非常规结构。深度学习技术已成为一种有前途的解决方案,但由于在不同部门,医院和国家 /地区的患者记录结构和语言的差异,在现实世界中实施它们引起了挑战。在这项研究中,我们介绍了基于变压器的模型Anoncat,以及如何在现实世界中将其部署在现实医疗保健中的蓝图。anoncat通过一个过程进行了培训,该过程涉及来自三家具有不同电子健康记录系统和3116个文档的英国医院的手动注释的现实文档的修订。该模型在所有三家医院中均达到了高性能,召回0.99、0.99和0.96。我们的发现证明了深度学习技术提高全球医疗保健数据中修复的效率和准确性的潜力,并强调了不仅使用这些模型的建筑工作流程的重要性,但也能够不断微调和审核这些算法的性能,以确保在现实世界中持续有效性。这种方法为通过微调和