右心脏适应肺动脉高压(pH)是患有或面临心肺疾病风险或有风险的临床结果,发病率和死亡率的关键决定因素。世界上关于肺动脉高压的世界研讨会最近将pH值重新定义为平均肺动脉压> 20 mM Hg,基于大量的流行病学证据,强调了甚至在重大不良临床事件上平均脉冲脉冲压力的显着升高的显着影响。pH值降低的诊断阈值对超声心动图及其在早期检测和筛查,重固定的血液动力学评估和纵向监测中的关键作用具有新的兴趣。但是,对右心脏的系统评估仍然不一致,这主要是由于专注于左心评估,对右心脏超声技术的熟悉程度有限,并且缺乏参考证据定义正常的右心脏大小和功能。对正确心脏的系统,全面的超声评估为筛查处于危险人群,pH分类,风险地层,监测治疗治疗反应和告知预后方面提供了有价值的诊断见解,从而提高了临床效果。(J Am Soc Echocardiogr 2025; 38:141-86。)
摘要:第五工业革命正在迎来技术进步和社会转型的深刻时代,促使对图书馆在这种数字景观中的不断发展的作用进行了批判性研究。被视为知识的保管人,图书馆必须适应数字世界的这些变化的动态,同时保留其核心原则。这项研究研究了先进技术的战略整合,旨在在面对复杂挑战时重新确定图书馆的使命。第五次工业革命涵盖了各种技术的融合,包括物联网(IoT),云计算,生物技术,纳米技术和量子计算,所有这些都以数据货币为基础。人工智能(AI)是一个焦点,有望增强用户体验和运营效率,但是,它也引起了批判性的道德和隐私问题,这些问题挑战了基本图书馆原则。本研究采用解释性内容/文档分析方法来检查图书馆不断发展的作用,考虑到它们在桥接数字鸿沟中的关键功能,为技术和数字资源提供公平的访问,推进研究和创新,并促进社区参与。该研究强调了应对与数据隐私,数字包含,资源分配,知识产权和可持续性有关的挑战的必要性。但是,Dellesechallenges,库
绘画的认知转变是通过神经和心理通路来解释的,位于“眼睛 - 视觉皮层 Vn”弧(光收集、视网膜对比度图、中央凹压缩、周边视觉、扫视分布、视觉分割、枕叶皮层)和“运动皮层 Mn - 手”弧(拇指、精细运动技能、触觉、躯体敏感性、运动前皮层、辅助运动区、小脑)之间,并汇聚在第三个弧“凝视网络 R fp - 手势”上:一个视觉运动界面和组成的区域(视觉空间注意、程序工作记忆、本体感受空间、后顶叶皮层、楔前叶、前额叶皮层、感觉运动模式)。绘画的神经生物学基础是通过感知和动作的同时空间映射来解释的,其中主要通过背部通路,将绘画置于大脑顶部。
自发染色体重排 (CR) 在物种形成、基因组进化和作物驯化中起着至关重要的作用。为了能够利用 CR 的育种潜力,人们开始通过 X 射线照射将染色体片段化,从而进行植物染色体工程。随着 CRISPR/Cas 系统的兴起,人们可以高效地在任意染色体位置诱导双链断裂 (DSB)。这使得预先设计的染色体工程达到了全新的水平。可以通过诱导染色体易位来打破特定基因之间的遗传连锁。可以恢复抑制遗传交换的自然倒位以进行育种。此外,人们已经开发出各种通过缩小常规标准 A 染色体或额外 B 染色体来构建微型染色体的方法,这些方法可以作为未来植物生物技术的载体。最近,人们可以构建一个功能性的合成着丝粒。此外,人们已经建立了不同的基因组单倍体化方法,其中一些方法基于着丝粒操作。未来,我们期望看到更复杂的重组,这些重组可以与重组酶等先前开发的工程技术相结合。染色体工程可能有助于重新定义遗传连锁群、改变染色体数量、在微型载货染色体上堆叠有益基因,或建立遗传隔离以避免杂交。
神经胶质细胞(星形胶质细胞,少突胶质细胞和小胶质细胞)在中枢神经系统(CNS)的几个生理和病理过程中成为关键参与者。星形胶质细胞和少突胶质细胞不仅是释放营养因子或调节能量代谢的支持性细胞,而且还积极调节三方突触中的关键神经元过程和功能。小胶质细胞定义为提供免疫监测的CNS居民细胞;但是,它们还积极地有助于通过清除细胞碎片或调节突触发生和修剪来塑造神经元微环境。鉴于许多由神经胶质细胞协调的相互连接的过程,急性和慢性中枢神经系统不仅会造成神经元损害,而且还会触发复杂的多方面反应,包括神经素浮肿,包括神经蛋白流量肿瘤,这可以促进疾病进展和症状恶化,这并不奇怪。总体而言,这使胶质细胞成为治疗中枢神经系统疾病的靶向疗法的出色候选者。近年来,基因编辑技术的应用已重新设计了治疗遗传和与年龄有关的神经系统疾病的治疗策略。在这篇综述中,我们讨论了群集的定期间隔短的短膜重复序列(CRISPR)/CAS9基因编辑在神经退行性疾病治疗中,重点是开发基于病毒和纳米粒子的基于病毒和纳米粒子的递送方法,以开发用于体内的细胞靶标。
GLP-1受体激动剂模仿天然GLP-1肽的作用,增强胰岛素分泌,抑制胰高血糖素的释放,减慢胃排空和饱腹感。最初引入以治疗糖尿病,还发现它们对体重减轻有重要影响。根据医学和非医学专家的看法,肥胖症医疗管理的范式可能会迫在眉睫(1-3)。诸如Semaglutide,Liraglutide或Tirzepatide(双重GLP-1和GIP类似物)等药物导致参与者在临床试验和现实世界中的参与者的重量显着降低,使其在患者和医生中流行。GLP-1受体激动剂在体重管理中的成功在于其多方面的机制,它解决了饥饿,饱腹感和葡萄糖代谢的复杂生理途径。这些药物不仅针对胰腺和肠道,还针对大脑的下丘脑食欲调节中心。GLP-1类似物的某些影响可能归因于其对中枢神经系统神经递质分泌/作用的作用;它们增强了γ-氨基丁酸(GABA)活性,恢复多巴胺能活性,并与肽YY(PYY)并行作用(4-6)。从这个意义上讲,GLP-1类似物不仅通过解决血糖控制,还会影响体重和心血管健康,从而重新发现了代谢疾病的治疗方法。目前,GLP-1模拟使用的长期后果超过1.5 -2年看起来很有希望;在已出版的荟萃分析中,
作为个人,我们努力跟上我们遇到的新发展。另一方面,随着“智能国家”或“数字世界”的概念进入我们的生活,大众似乎不可能继续旁观这一发展。这就是为什么,随着新的“数字世界”转向智能技术,我们已经进入了一个与日常生活中的新情况相适应的进化过程。得益于智能系统的开发,过去需要数天时间的工作和交易现在可以在更短的时间内得到解决,并且误差率非常低。 HAVELSAN 很好地遵循了这个被称为电子转型的过程,它是国家数字化转型的先驱。迄今为止,HAVELSAN已成功完成了多个电子化转型项目,并成为土耳其最大的电子化转型项目的公司。
我们研究了在操作概率的理论的背景下,可逆的现象及其输出系统的输入系统之间的因果影响。我们分析了从量子理论的文献中借用的两个不同的定义,它们是等效的。一个是基于信号的概念,另一个是用于定义量子细胞自动机中细胞邻域的无效。我们在一般场景中采用的后一种定义,事实证明,这与前者严格弱:系统可能对另一个人的因果影响而不会发出信号。非常重要的是,反状来自经典理论,其中提出的因果影响概念决定了细胞自动机中细胞邻域的重新发现。我们强调,根据我们的定义,无论如何在没有相互作用的情况下,不可能具有因果影响,例如在类似钟形的场景中。我们研究了因果影响的各种条件,并引入了我们称之为无障碍的特征,而我们证明了信号传导和因果感染的共同体。拟议的定义对因果网络的分析产生了有趣的后果,并导致对经典蜂窝自动机的邻居概念进行修改,从而阐明了一个难题,这些难题显然使邻里比原始的邻居更大。
摘要 . 了解大脑不仅对理解生命的复杂性或基础生物科学的进一步发展具有内在的吸引力,而且对提高我们的幸福感也具有高度相关性,因为大脑表现出一种对身体的控制力,使其既能够引发疾病,也能够促进愈合过程。考虑到大脑发挥的双重作用,即使用上升和下降路径将来自外部世界和内部环境的信息结合起来,这篇综述挑战了以大脑为中心的大脑观。在我们的日常生活中,我们通过将化学物质、压力变化和光波转化为味觉、气味、触觉、声音和视觉来构建外部世界的表征。在此过程中,我们通过一种称为外感觉的过程来解释我们的感官,从而创造我们对外部世界的体验。但要想引人注目,笛卡尔对大脑的这种看法必须通过整合我们身体内部的事件来完成。大脑构建我们内在感觉(称为内感觉)的方式现在开始被揭示。因此,脑科学经历了一场重要的革命,并将经历一场革命,重新定义其超越头骨的界限,倾向于更全面的视野,即通过具身大脑的概念来实现,大脑充当巧合探测器,将感官体验与身体稳态相结合。本综述的目的是强调一些机制,通过这些机制,大脑活动受内部线索控制,以便更好地预测。这里以肠脑轴为典型例子,讨论内部环境与大脑功能之间的沟通,这些沟通塑造了我们的感觉和思维方式。