*表明CDC强烈建议使用第二剂,但这并不是学校援助的必要条件。 div>** CDC:通过免疫实践咨询委员会(ACIP)建议常规疫苗以防止疫苗接种可预防疾病。 div>尽管亚利桑那州要求大多数疫苗上学,但您的孩子可能需要其他推荐的疫苗。 div>这些剂量的细节和指导有例外,请参阅亚利桑那州学校免疫的要求:亚利桑那州K-12度的学校注册所需的疫苗指南(2024-2025学年)
作者:Dale Shepard(克利夫兰诊所)Matthias Weiss(TheDacare)Bert O'Neil(社区健康网络)Amol Rao(纪念馆)Nihal Abdulla(癌症和血液研究中心)艾哈迈德·扎尔祖尔(Ahmad Zarzour) Parsons(Gundersen Health System)Paul La Porte(TOI临床研究)Samantha Mallahan,Chelsea Osterman,Danielle Skelly,Emily Patnaude,Amy Gordon Franzen,Ezra Cohen,Ezra Cohen,Matthewewnewoney(Matthewewoney(tempus)
药物化合物已成为废水中越来越重要的污染物来源,因为它是传统的处理方法无效地去除它们的方法,因此它们通常被放入环境中。可以使用液体液体提取成功去除药物,并且可以使用宇宙RS预测相互作用并识别最有前途的溶剂。但是,COSMO热模型无法解释关键过程参数,从而降低了这些计算模型的准确性。因此,需要替代计算方法来准确预测可以纳入处理和相互作用变量的药物的提取产率。这项工作使用机器学习来预测使用八种溶剂的11种药物的提取产率。探索了六个回归模型和两个分类模型。使用ANN回归器(测试MAE:4.510,测试R 2:0.884)和RF分类器(测试精度:0.938,测试召回:0.974)获得了最佳性能。RF回归分析和分类还显示了关键的提取产率特征:溶剂与喂养比,N - 辛烷 - 水分系数,氢键,氢键和范德华对多余的焓的贡献,以及pH距离至最近的PKA。机器学习显示为筛选和选择最有希望的溶剂和过程条件的绝佳工具,以从废水中去除药物。
作者:Dale Shepard(克利夫兰诊所)Matthias Weiss(TheDacare)Bert O'Neil(社区健康网络)Amol Rao(纪念馆)Nihal Abdulla(癌症和血液研究中心)艾哈迈德·扎尔祖尔(Ahmad Zarzour) Parsons(Gundersen Health System)Paul La Porte(TOI临床研究)Samantha Mallahan,Chelsea Osterman,Danielle Skelly,Emily Patnaude,Amy Gordon Franzen,Ezra Cohen,Ezra Cohen,Matthewewnewoney(Matthewewoney(tempus)
体外和体外农杆菌介导的毛状根转化 (HRT) 测定是植物生物技术和功能基因组学工具包的关键组成部分。在本报告中,使用 RUBY 报告基因优化了大豆的体外和体外 HRT。评估了不同的参数,包括农杆菌菌株、细菌细胞培养物的光密度 (OD 600 )、共培养基、大豆基因型、外植体年龄以及乙酰丁香酮的添加和浓度。总体而言,就毛状根和转化根(表达 RUBY )的诱导百分比而言,体外测定比体外测定更有效。尽管如此,体外技术被认为更快且方法更简单。在 cv 的 7 天大子叶上观察到了 RUBY 的最高转化。 Bert 用 R1000 接种 30 分钟,R1000 悬浮在 ¼ B5 培养基中,OD 为 600 (0.3),乙酰丁香酮含量为 150 µM。该测定的参数还通过两步体外毛状根转化获得了最高百分比的 RUBY。最后,使用基于机器学习的建模,进一步确定了两种测定的最佳方案。本研究建立了适用于大豆功能研究的高效可靠的毛状根转化方案。
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
*虽然在马里科帕县,甲型肝炎疫苗只是进入托儿所的一项要求,但是,所有县都建议 12 个月及以上的儿童接种该疫苗。 ** CDC:疾病控制和预防中心通过免疫实践咨询委员会 (ACIP) 建议定期接种疫苗以预防可通过疫苗预防的疾病。尽管亚利桑那州要求进入学校/托儿所时接种大多数疫苗,但您的孩子可能还需要接种其他推荐疫苗。 ˟ 这些剂量有例外 – 有关详细信息和指导,请参阅亚利桑那州学校免疫接种要求:亚利桑那州入学所需疫苗指南 儿童保育、学前教育或启蒙计划(2024-2025 学年)
拟议的专家意见旨在解决糖尿病周围神经病(DPN)的概念,临床和治疗方面的当前知识,并提供指导文件,以帮助临床医生在DPN护理中提供最佳实践。参与的专家认为临床医生对这种疾病的怀疑是早期识别和诊断的关键因素,强调了第一次入选或推荐医生对疾病的意识提高。提出的“筛查和诊断”算法涉及在患有神经性症状和/或神经病的迹象的患者中考虑DPN,并在dpn危险中谨慎地考虑远距离的Neuropthe neuropthe neuropth periper neurop,并排除其他详细的神经疗法,以排除AIRIPATH的NEUROP,并排除其他导致A的神经性症状和/或迹象。在非典型情况下对小神经功能障碍或大型神经功能障碍的结果测试。尽管目前,DPN的第一线干预措施由优化的血糖控制(主要用于1型糖尿病)和多因素干预措施(主要针对2型糖尿病)表示,但需要个性化的DPN发病机理治疗方法。alpha-脂肪酸(ALA)似乎是一条重要的第一线发病机理,因为它是一种直接和间接的抗氧化剂,可与直接针对活性氧的策略一起使用,并非上定义地支持内源性抗氧化剂的能力,以改善DPN条件。该专家意见文件有望增加在该领域的现有研究中仍然存在差距,需要具有敏感终点和标准化方案的精心设计,健壮,多中心临床试验,以通过简单有效的算法促进DPN的诊断,并跟踪疾病的进展和治疗反应。识别生物标志物/预测因子,从潜在的疾病调整角度可以允许个性化方法,这可能会为新型治疗的新疗法提供机会,这些疗法在DPN的早期阶段会有效,并且可能会改变这种疾病的自然病程。识别生物标志物/预测因子,从潜在的疾病调整角度可以允许个性化方法,这可能会为新型治疗的新疗法提供机会,这些疗法在DPN的早期阶段会有效,并且可能会改变这种疾病的自然病程。