• 联合品牌的 Cigna-eviCore 医疗保健 (eviCore) 循证专有临床指南评估了一系列先进的成像和程序,包括 CT、MRI、PET、胃肠内窥镜检查以及心脏和肌肉骨骼干预。 • Cigna 和 eviCore 保留更改和更新指南的权利。指南每年接受正式审查。Cigna-eviCore 的联合品牌指南基于主要国家和国际协会和学会指南和标准、同行评审文献、主要论文以及执业学术和社区医生支持的当前证据。 • 这些指南并非旨在取代或替代合理的医疗判断,而是应根据个人的临床状况,帮助确定最合适的成像或其他指定程序。这些指南旨在涵盖大多数人所经历的医疗状况。但是,这些指南可能不适用于某些临床情况,医生的判断可以凌驾于指南之上。 • 这些指南提供基于证据的临床益处,重点关注医疗质量和患者安全。 • 临床决策(包括治疗决策)由患者及其医疗服务提供者负责。临床医生应使用独立的医疗判断,考虑临床情况来做出个人管理决策。 • Cigna 和 eviCore 支持美国内科医学委员会 (ABIM) 基金会和许多国家医师组织发起的“明智选择”倡议 (https:// www.choosingwisely.org/),以减少过度使用价值低、没有价值或风险大于收益的诊断测试。
在我们迎来过去的一年之际,我们展望了大学在新校长选举的推动下将进一步发展,我们很高兴与大家分享我们在努力中取得的进展。我们对国际化、绿色技术和负责任材料的开发关注,这塑造了研究、教学和我们的第三项使命的新战略。在我们的部门内,我们认识到材料在科学研究和教育计划中的关键作用。新的本科学习计划“材料科学与技术”的成功推出标志着一个重要的里程碑,该计划以创新课程为特色,让学生从第一学期开始就接触到材料特定内容。该计划为我们参与欧洲材料学院 (EEIGM) 奠定了基础,该学院涉及欧洲六个材料科学部门,旨在激励学生应对材料科学的全球挑战。国际硕士课程“先进材料科学与工程 - AMASE”已于秋季迎来首批毕业,并成为我们部门教育计划不可或缺的一部分。我们部门值得一提的是两个新的 Christian Doppler 实验室。 CD-Lab“基于知识的先进钢设计”专注于研究废料使用量增加以及由此产生的不良杂质和微量元素对钢性能的影响。CD-Lab“晶体生长的先进计算设计”开发了改进晶体生长过程的计算方法,重点是碳化硅。我们的部门还通过购买高端设备扩展了其能力,包括用于超快速烧制 3D 打印陶瓷的新型火花等离子烧结系统、用于在低温下进行微观和纳米力学测试的低温纳米压痕仪,以及两台能够在微观和中观尺度上进行跨尺度疲劳测试的小型测试设备。在莱赫阿尔贝格举行的第二届材料科学研讨会重点关注“计算材料科学”,来自德国和美国的国际演讲者出席了会议。我们在莱奥本举办了第 7 届“先进陶瓷断口分析”会议、第 7 届“年轻陶瓷家增材制造”(yCAM)、第 57 届金相学会议以及第 20 届“合金元素对迁移界面影响研讨会”。我们还在塞高组织了第 93 届 IUVSTA 研讨会,主题是“表面工程结构、涂层和薄膜表征方面的进展”。我们为我们的年轻研究生获得的多个会议奖项以及我们的研究人员获得的杰出认可感到自豪。我们在《Materials Today Advances》、《Journal of Materials Chemistry A》、《Advanced Materials》、《Advanced Science》、《Nature Communications》或《Communications Materials》等著名期刊上发表了大量文章,强调了我们部门在 2023 年的高质量研究活动。我们衷心感谢我们的研究人员、学生和工业合作伙伴的坚定支持和持续的动力,以共同应对未来的挑战。我们邀请您欣赏以下页面,概述了我们部门在 2023 年的活动。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
自然语言处理 (NLP) 是人工智能 (AI) 中的一个重要研究课题,因为它是不同科学和工业利益的目标。自然语言处于学习、知识表示和认知建模的交叉点。最近的几项人工智能成就已多次显示出它们对复杂推理任务的有益影响,在语言建模、处理和推理方面具有巨大的应用前景。然而,自然语言理解仍然是一个丰富的研究课题,其交叉融合涵盖了许多独立领域,例如认知计算、机器人技术以及人机交互。对于人工智能而言,自然语言是范式和应用的研究重点,但同时,它们也是从视觉到规划和社会行为等大多数智能现象的自动化、自主性和可学习性的基石。对这种多样化和有前景的互动的反思是当前人工智能研究的重要目标,完全符合 AI*IA 的核心使命。本次研讨会由 AI*IA 1 的 NLP 特别兴趣小组和意大利计算语言学协会 (AILC) 2 的支持,旨在广泛概述意大利人类语言技术 (HLT) 领域的最新活动。在此背景下,NL4AI 2021 [ 1 ] 的组织为研究人员提供了分享专注于多个领域的 NLP 的人工智能应用经验和见解的机会。2022 年版 NL4AI 与意大利人工智能协会第 21 届国际会议 (AIxIA 2022) 在同一地点举行,后者将于 11 月 30 日在意大利乌迪内举行。会议议程可在研讨会官方网站 3 上查看。我们收到了 17 份提交,其中 13 份经过同行评审后被接受。在主题方面,研讨会的贡献范围从纯 NLP 作品到将 NLP 与其他 AI 应用联系起来的更广泛的提案。
众所周知,化石燃料的广泛使用导致大气中二氧化碳水平稳步上升。工业革命前时期大气中二氧化碳平均水平在 180 ppm(冰河时期)和 280 ppm(间冰期)之间波动。根据查尔斯·大卫·基林的测量,1958 年大气中二氧化碳浓度约为 317 ppm。此后,这一数值急剧上升,自 2017 年以来,一直稳定在 400 ppm 以上。毫无疑问,这导致了自然大气平衡的变化,进而导致地球平均温度明显上升。从环境和安全的角度来看,用可再生能源替代对环境有害的化石燃料似乎非常有吸引力,因为使用可再生能源不会产生有毒产品。然而,它们的间歇性和地球上分布不均是
人工智能(AI)具有提高效率和提高准确性的优点,已广泛应用于学术界和工业界[3]。从隐私和安全的角度来看,人工智能为新兴应用带来了机遇和挑战。一方面,人工智能可以帮助相关方在具有挑战性的情况下更好地保护隐私,从而改善最先进的安全解决方案。另一方面,人工智能也存在决策不透明、算法有偏见和安全漏洞的风险,对传统的隐私保护观念提出了挑战。