然而,一个限制是,AI系统需要大量高质量数据来最大限度地减少其结果的偏差。在外科领域实施AI的其他担忧是在数据处理和分析时存在保密风险和患者信息完整性丧失的风险。对此,世界卫生组织明确了其在医学领域使用AI的道德立场。他们强调根据正义、仁慈、患者自主和非恶意原则实施AI使用的重要性。关于在医学中使用AI的法律框架,世界上最先进的卫生系统已经出台了新的法规。然而,这一领域在不久的将来仍将不断发展(1,6)。近年来,AR和虚拟现实(VR)在改善外科领域的教学过程方面发挥了重要作用。这些日益普及的技术进步使医学生、住院医生和研究员能够沉浸在模拟和控制的场景中,从而获得培训过程中所需的手术技能和能力。AR 和 VR 的优势包括缩短学习曲线时间、通过不将真实患者暴露于学习目的来减少可能的手术并发症以及使用先前建立和验证过的课程 (8)。同样,
摘要 目标:为严重运动障碍患者开发脑机接口 (cBCI) 理想情况下依赖于最终用户和其他利益相关者(如护理人员和研究人员)之间的密切合作。意识到这些群体之间可能存在的意见分歧对于开发可用的 cBCI 和访问技术 (AT) 至关重要。在本研究中,我们比较了潜在 cBCI 用户、他们的护理人员和 cBCI 研究人员对以下方面的意见:(1) 用户希望用 cBCI 控制哪些应用程序;(2) 用户喜欢使用哪些心理策略来控制 cBCI;(3) 用户希望在临床轨迹的哪个阶段了解 AT 和 cBCI。方法:我们收集了 28 名闭锁综合征患者、29 名护理人员和 28 名 cBCI 研究人员的数据。问卷配有动画视频来解释不同的 cBCI 概念,并评估了这些概念的实用性。结果:三组人对最理想的 cBCI 应用的看法一致,但对心理策略和了解 cBCI 的时间存在分歧。动画视频被认为是向最终用户和其他利益相关者解释 cBCI 和心理策略的清晰且有用的工具。结论:利益相关者之间对于用户喜欢使用哪种心理策略以及他们希望何时了解 cBCI 存在明显分歧。为了推进 cBCI 的开发和临床实施,有必要将研究议程与最终用户和护理人员的需求相结合。
同一法令还规定,HTA 的实施涵盖其流程框架与卫生部和菲律宾健康部其他现有计划和政策的协调和联系,这些计划和政策确定了资金分配或覆盖的技术,例如菲律宾国家处方集系统 (PNFS)。根据 1993 年第 49 号行政命令,所有政府机构都被指示使用 PNF 作为政府采购的基础。PNF 是国家的基本药物清单,其中列出的药物根据安全性和有效性、成本效益、可负担性和公共卫生相关性进行评估和列入。目前,PNFS 的评估流程(审查和确定哪些药物主题申请应列入清单(因此由政府覆盖))被纳入 HTA 流程。
a. 定义价值链活动和转型指标。b. 定义排放指标和非排放指标的基础科学。c. 针对与每项活动相关的商业模式转型选项审查指标。2. 制定测量/核算和报告标准,包括每项活动的相关范围、最低目标边界以及基于排放的指标范围内可用的目标设定方法。3. 制定非排放指标的测量和报告标准。4. 审查和确定与 1.5°C 相符的相关全球情景,并根据这些情景推导出目标设定路径。5. 开发目标设定工具。6. 起草一项标准,作为排放核算和报告以及目标设定和验证指南的基础。
文本对图像模型的当前指标通常依赖于不足以代表人类真正偏好的统计指标。尽管最近的工作试图通过人类注释的图像来学习这些偏好,但它们将人类偏好的丰富挂毯降低到单个总分。然而,当人类评估不同方面的图像时,偏好会有所不同。因此,为了学习多维人类偏好,我们提出了多维偏好评分(MPS),这是评估文本对图像模型的第一个多维偏好评分模型。MPS引入剪辑模型上的偏好条件模块,以学习这些不同的偏好。它是根据我们的多维人类偏好(MHP)数据集进行了训练的,该数据集包括607,541图像的四个维度(即美学,语义一致性,详细信息,详细质量和整体评估)的918,315个人类偏好选择(即,美学,语义一致性,细节质量和整体评估)。这些信息是由各种最新的文本对图像模型生成的。MPS在4个维度上的3个数据集上优于现有的评分方法,从而使其成为评估和改进文本对象的有希望的指标。该模型和数据集将被公开使用,以促进未来的研究。项目页面:https://wangbohan97.github.io/mps/。
目的:这项研究的目的是调查马来西亚人中对Covid-19的知识,疫苗偏好和恐惧。材料和方法:这项在线问卷调查是从2021年9月6日至2021年11月12日通过成人马来西亚人的Google表格进行的。为了收集数据,将经过试验的经过验证的问卷调查给387个样本。由参与者的社会人口统计学特征,有关信息来源的COVID-19疫苗的知识,参与者的特定疫苗偏好,具有理由,疫苗接种状态和COVID-19的恐惧的调查表。结果和讨论:参与者对Covid-19疫苗有良好的了解。总共275(71%)参与者表现出对特定疫苗的偏爱;辉瑞-biontech是最优选的(61.5%)疫苗。偏爱的主要原因是有效性(56.4%)。疫苗优先组的参与者获得的知识评分(7.38/8)比非偏爱(7.28/8)的知识评分更高。总共376名(97%)的受访者接种疫苗,其中250名(66.5%)接受了首选疫苗,而22(5.85%)未获得挑选,而休息却没有偏爱。在11名未接种疫苗的参与者中,有3名拒绝接种疫苗,以提供非脱颖而出的疫苗。与非接种疫苗的组相比,疫苗接种组中对共vid-19分数的恐惧更高(21.34/35)(19.09/35),尽管没有观察到显着差异。结论:大多数马来西亚人都对COVID-19疫苗接种知识渊博,接受了疫苗优先和疫苗接种。疫苗偏爱的参与者比没有明显差异的非偏爱更具知识渊博。在非接种疫苗的参与者中,有27%(3/11)拒绝提供的疫苗接种,如提供的非偏爱疫苗。疫苗接种组对19009的恐惧比非接种疫苗的恐惧更多,而差异无关。提高意识是人们不愿意或犹豫接种疫苗所必需的。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
供水和卫生基础设施的规划、管理和运营。该框架将具体提供以下方面的指导:(i)确保在供水和卫生基础设施的设计中考虑到气候变化因素;(ii)推广资产规划和资产管理方面的最佳做法;(iii)将基础设施规划和设计与运营方面联系起来,例如气候变化和环境可持续性、综合集水区规划、水源管理、干旱管理以及需求和泄漏管理;(iv)通过采用侧重于预算规划、关税制定和服务水平的积极主动的财务和绩效管理做法,促进供水和卫生部门更加商业化的发展;以及 b. 制定技术标准,指导弹性基础设施的设计
好:这是一个非常严重的问题。研究表明,由于整个刑事司法系统中的系统性种族偏见,黑人和棕色的人,尤其是男人,与白人相比,与白人相比,被囚禁不成比例。