我们为我们最先进的贵金属炼油厂感到自豪,我们从环境,健康和安全的角度设计。这意味着我们员工和访客的健康和安全始终受到保护。我们不断努力改善流程并投资新设备,环境控制,例如空气污染控制和空气处理设备。
美国化学和炼油部门是主要的经济驱动力,雇主和出口商品。美国化学品的生产和石油精炼对GDP贡献约8%,对能源安全至关重要。2这些部门生产用于运输,动力和热量的主要燃料;向广泛使用的下游产品提供必需的投入,包括塑料,肥料和药品;代表美国主要的出口商品。在2022年,美国既是世界顶级的石油生产商,又是炼油厂,负责全球约20%的精制产品。i美国负责约11%的全球化学物质生产。ii的上下文,化学物质是美国最大的出口部门,占所有出口的9%,到2030年,增长的潜力为12%。III,IV,V持续访问安全,负担得起的和可靠的油,化学品和衍生产品对美国公众,清洁能源过渡以及美国国家安全至关重要。
摘要 分子动力学 (MD) 模拟对于预测不同分子体系的物理和化学性质至关重要。虽然全原子 (AA) MD 提供了高精度,但其计算成本高昂,这促使了粗粒度 MD (CGMD) 的发展。CGMD 将分子结构简化为具有代表性的微珠,以降低成本,但会牺牲精度。像 Martini3 这样的 CGMD 方法,经过实验数据校准后,在各个分子类别中具有良好的泛化能力,但往往无法满足特定领域应用的精度要求。本研究引入了一种基于贝叶斯优化的方法来优化 Martini3 拓扑结构,使其能够适应特定应用,从而确保精度和效率。优化后的 CG 势能适用于任何聚合度,提供与 AA 模拟相当的精度,同时保持与 CGMD 相当的计算速度。通过弥合效率和精度之间的差距,该方法推动了多尺度分子模拟的发展,使各个科学技术领域能够以经济高效的方式发现分子。 1. 引言粗粒度分子动力学 (CGMD) 1,2 已成为材料开发的重要工具,为了解聚合物 3 、蛋白质 4 和膜 5 等复杂分子系统提供了关键信息。CGMD 的主要优势在于它能够在更大长度尺度和更长时间范围内探索分子现象,超越了传统全原子分子动力学 (AAMD) 6–8 模拟的能力,后者通常提供更高的分辨率,因此特别擅长捕捉详细的界面相互作用 9 。具体而言,CGMD 通过将原子团有效地表示为珠子 10–15 来实现这种加速,从而将模拟能力在时间上从皮秒扩展到微秒,在空间上从纳米扩展到微米。因此,粗粒度技术为传统 AAMD 无法获得的复杂分子现象提供了前所未有的洞察,从而能够研究聚合物自组装行为等复杂现象 16 。新兴的CGMD建模工具集依赖于两个关键组件来学习潜在的分子间关系:珠子映射方案和珠子间相互作用的参数化。这些组件的开发主要采用两种方法:自上而下10–12和自下而上13–
市场动态 在撰写本文时,澳大利亚能源市场经历了重大混乱,导致价格波动加剧和政策变化。这种混乱可能会影响路线图的实施时间。例如,2022 年 6 月,西澳政府宣布将在 2029 年前关闭国有燃煤发电厂,这代表着不断变化的动态,可能会影响西澳的氧化铝精炼业务。1 此外,澳大利亚在《巴黎协定》中承诺到 2030 年将排放量减少 43%,这可能会导致工业界采取更大、更紧迫的气候行动。2 应密切监测与产能或负荷减少有关的新市场机制,因为它们可能会影响本路线图报告中讨论的技术和选项的经济性。
主要路线图以最大限度地提高二氧化碳减排的资本成本效率为基础。这导致了一项分阶段投资计划,该计划优先用电锅炉替换现有的火力锅炉,并维护现有的蒸汽消耗器。通过路线图,火力锅炉替换所需的其他技术按成本效率的降低顺序实施,但高能效项目除外,例如机械蒸汽再压缩,这些项目可以在大规模低碳电力可用之前实施。电气化被发现能够使工厂的绝大多数范围 1 和 2 排放脱碳,在高复杂性情况下,主要的未缓解排放来自 FCC 焦炭燃烧。
手工炼油,在当地俗语中通常称为“kpo-fire”,包括煮沸原油并收集产生的烟雾,这些烟雾在储罐中冷凝,并在当地用于照明、燃料和运输目的 [6]。临时酿酒厂使用明火加热,燃料是倒入地下坑中的原油。随着石油燃烧,其中一些会渗入土壤,可能污染地下蓄水层 [7]。炼油过程会产生浓密的烟尘和气态化合物,这些烟尘和气态化合物与未加工部分一起释放到环境中。炼油过程中会产生大量空气污染物,如炭黑和烟尘,主要含有多环芳烃 (PAH) [8-10]。这些污染物对环境和健康构成重大风险
通过肌肉嗜性 AAV 衣壳和肌肉特异性启动子的双策略方法改进向骨骼肌的基因传递。作者:Annalucia Darbey 1、Wenanlan Jin 1、Linda Greensmith 1 James N. Sleigh 1,2*、John Counsell 3*、Pietro Fratta 1,4* 隶属关系:1 英国伦敦大学学院皇后广场神经肌肉疾病系和伦敦大学学院皇后广场运动神经元疾病中心,伦敦大学学院皇后广场神经病学研究所,伦敦 WC1N 3BG。2 英国伦敦大学学院英国痴呆症研究所,伦敦 WC1E 6BT。3 英国伦敦大学学院外科和介入科学部靶向干预研究系,查尔斯贝尔楼,伦敦,英国 4 弗朗西斯克里克研究所;伦敦,NW1 1AT,英国 * 通讯作者:Pietro Fratta ( p.fratta@ucl.ac.uk),John Counsell ( j.counsell@ucl.ac.uk) 和 James N. Sleigh ( j.sleigh@ucl.ac.uk)。摘要基于腺相关病毒 (AAV) 的病毒载体技术已展示出将基因货物运送到体内各种器官的良好能力,过去十年中,几种新型候选病毒在人体试验中显示出临床效果。然而,天然存在的 AAV 血清型在靶向骨骼肌方面的能力有限,而骨骼肌是许多神经肌肉疾病的重要基因治疗靶点。这意味着通常需要高剂量的 AAV 才能在肌肉中达到治疗有效剂量。为了克服这个问题,新型 AAV 载体衣壳已被设计成通过将靶向肽插入 AAV9 衣壳可变区 VIII (VRIII) 来实现更高的肌肉转导效率。我们在此描述了一种新报道的衣壳,称为 MyoAAV1A,与临床验证的肌肉特异性启动子相结合。我们分析了体内递送至小鼠骨骼肌的效率,发现 MyoAAV1A 衣壳与 MHCK7 启动子的最佳组合可维持骨骼肌中的转基因表达,并减少脱靶组织(尤其是肝脏)中的表达。这突出了一种有前途的衣壳-启动子组合,可在骨骼肌基因治疗的进一步临床前研究中取得进展。图形摘要
关于 LEK Consulting 我们是 LEK Consulting,一家全球战略咨询公司,与企业领导者合作,以抓住竞争优势并扩大增长。我们的洞察力是重塑客户业务轨迹的催化剂,发掘机遇并帮助他们掌握关键时刻。自 1983 年以来,我们的全球业务遍及美洲、亚太地区和欧洲,为各行各业的领导者提供指导,从全球企业到新兴创业企业和私募股权投资者。想要了解更多信息?请访问 www.lek.com。