。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是
对液体表面和界面处发生在原子和分子水平上发生的过程的研究对于基本表面科学以及物理,化学和生物学中的实际应用至关重要(Pershan,2014; Dong etel。,2018年; Zuraiqi等。,2020年;他等人。,2021; Allioux等。,2022)。但是,在需要亚纳米精度时,基于同步加速器的X射线散射的实验方法使这些现象稀少,从而使基于同步加速器的X射线散射成为主要的选择。高强度的同步X射线梁,它们的高度紧凑的束尺寸和非常低的差异启用了以下时间分辨率的原位和操作实验,这对于标准的实验室X射线源是不可能的。最近对欧洲同步加速器辐射设施(ESRF)的升级允许使用具有前所未有的参数的极亮X射线源(EB)进行非常苛刻的实验(Raimondi,2016)。
酒精是最常用的物质之一,也经常被滥用,然而人们对饮酒后抑制控制表现变化的神经基础知之甚少。这项研究是单盲、安慰剂对照、随机设计,参与者(N=48)完成三次研究访问。每次访问时,参与者都会接受三种酒精剂量中的一种;即安慰剂剂量(等效血液酒精浓度 (BAC) = 0.00%)、低剂量酒精(目标 BAC=0.04%)或中等剂量酒精(目标 BAC=0.08%)。为了测量抑制控制,参与者在每次研究访问期间完成两次 Go/No-go 任务范例,一次是在服药前立即完成,一次是在服药后完成,同时用时域功能近红外光谱 (TD-fNIRS) 测量他们的大脑活动。还评估了酒精的 BAC 和主观影响。我们报告中等剂量的酒精会导致行为表现下降,但低剂量或安慰剂不会。我们在 go-no-go 阻滞实验中观察到右侧抑制性前额叶活动,这与先前的文献一致。使用标准和新颖的侧化指标,我们能够显著区分所有剂量。最后,我们证明这些指标不仅与抑制控制期间的行为表现有关,而且还为醉酒的法定黄金标准(即 BAC)提供了补充信息。
Téo Kronovsek、Eric Hermand、Alain Berthoz、Alexander Castilla、Matthieu Gallou-Guyot 等人。与年龄相关的视觉空间工作记忆衰退反映在背外侧前额叶激活和认知能力上。行为脑研究,2021 年,第 398 页,第 112981 页。�10.1016/j.bbr.2020.112981�。�hal-03187511�
摘要。气溶胶在大气中的辐射转移中起关键作用,它们对气候变化产生了重大影响。在本文中,我们提出并实施了使用其Mi-Crophysical特性开发气溶胶模型的框架。诸如尺寸分布,复杂折射率和球形百分比之类的微物理特性源自全球气溶胶机器人网络(Aeronet)。但是,当执行藻类测量程序(即,早晨,早晨和晴天晚些时候的晚期)时,通常会检索这些测量值,并且可能不会对卫星覆盖时间进行临时影响,因此无法携带卫星产品的有效阀门。To address this problem of temporal inconsistency of satel- lite and ground-based measurements, we developed an ap- proach to retrieve these microphysical properties (and the corresponding aerosol model) using the optical thickness at 440 nm, τ 440 , and the Ångström coefficient between 440 and 870 nm, α 440–870 .在过去28年内,开发了851个Aeronet部位的气溶胶模型。获得的恢复表明,在经验上可以以高达23%的不确定性检索微物理的特性。一个例外是折射率NI的虚构部分,为此,衍生的不确定性达到了38%。当需要检索微物理特性以及验证卫星衍生的产品时,这些气溶胶的特定参数模型可用于研究。
摘要 —本文研究了使用电反射法作为一种无损检测技术来监测并联电池组配置中电池极耳焊接的健康状况。开发了由圆柱形锂离子电池组成的 3D 模型,这些电池通过铜焊接在每个末端通过极耳连接。进行了电流表面分布分析,以了解反射信号的传播并选择最佳设置以提高反射灵敏度。然后,创建了几个严重程度和位置各异的缺陷模型来模拟焊接层中材料的逐渐损失。这项工作证明了基于反射仪的系统能够检测并联电池组配置中的焊接退化,据我们所知,这在文献中从未做过。索引词 —电反射法;锂离子电池极耳焊接;缺陷诊断
A.Loukkal 1*、M.Lematre 1、M.Bavencoffe 1、M.Lethiecq 1 1 GREMAN UMR 7347,图尔大学,INSA Centre Val de Loire,3 rue de la Chocolaterie,布卢瓦,法国 abderrahmane.loukkal@univ-tours.fr 摘要 微电子行业对于开发用于多层结构健康控制和诊断的无损工具和方法的需求日益增加。这些工具的目的是检测诸如分层、夹杂和微裂纹等问题。本文的目的是研究不完美界面对多层结构中波传播的影响。这种结构类型代表了许多微电子元件的典型架构。这项研究将基于反射系数和导波色散曲线的计算。所研究的结构是各向同性的三层,其中两个金属层通过环氧树脂制成的粘合层粘合在一起。进行了比较,以便从数字上评估粘合层的几种特性对导波行为的影响。此外,还实施了不完美粘弹性界面层模型 [1],以模拟金属层之间的不同粘附质量。关键词:反射系数;多层;不完美界面;导波;色散曲线;V(z,f) 方法;建模。
社会经济地位 (SES) 与大脑结构相关,鉴于长期以来观察到的 SES 与认知能力和健康之间的关系,这种关系备受关注。然而,主要问题仍未得到解决,尤其是这种关系背后的因果关系模式。在一项前所未有的大规模研究中,我们评估了遗传和环境对神经解剖学 SES 差异的贡献。我们首先在多个大脑区域(皮层和皮层下)建立稳健的 SES-灰质关系。这些区域相关性被解析为主要是遗传因素和可能由环境引起的因素。我们表明,遗传效应在某些区域(前额叶皮层、岛叶)比其他区域更强。在遗传效应较小的区域(小脑、颞侧),环境因素可能会产生影响。我们的研究结果表明,遗传和环境因素之间存在复杂的相互作用,这些因素影响着 SES-大脑关系,并可能最终为政策提供相关的见解。
X 射线反射率 (XRR) 被广泛用于研究硬质和软质凝聚态材料的表面和界面,包括二维材料、纳米材料和生物系统。它能够以亚埃的精度推导出材料表面区域沿法线的横向平均电子密度分布。[4–6] 这有助于确定各种参数,包括表面粗糙度、单层或多层材料的结构以及毛细波对液体表面的影响。高亮度同步加速器 X 射线束能够在环境条件下实时在分子水平上分辨材料结构,而其他表面敏感实验技术几乎无法做到这一点。[7] 此类实验的例子是使用专用设备和样品池研究液体表面和界面。[8–11] 然而,存在与液体 XRR 相关的特殊问题。液体和支撑物之间的润湿角会导致样品液体弯曲,这通常会使数据分析复杂化。 [12] 这个问题可以通过利用能够处理大面积样品的样品环境来解决,例如朗缪尔槽 [13] 应用特殊的数据处理方法 [12,14] 或使用 X 射线纳米束。 [15] 然而,在某些情况下,可以充分利用样品曲率,例如 Festersen 等人 [15] 使用宽平行同步加速器光束“一次性”记录 XRR 曲线,但散射矢量 q 的范围有限。 专用于原位和/或原位 XRR 研究的样品环境 [16] 的最新发展开辟了新的机遇,例如,通过化学气相沉积 (CVD) 研究在液态金属催化剂 (LMCats) 上生长 2D 材料的过程。 [17] 这些系统有望生长高质量的材料 [18] 但同时,对实验的要求很高。 [19] 它们必须适应高操作温度、高材料蒸发以及在大气压下暴露于反应气体混合物。此外,它们还局限于有限尺寸的样本
成人和儿童都通过反馈来学习将环境事件和选择与奖励联系起来,这一过程称为强化学习 (RL)。然而,用于评估儿童 RL 相关神经认知过程的任务有限。这项研究在记录事件相关电位 (ERP) 的同时,在青春期前儿童 (8-12 岁) 中验证了概率奖励学习任务的儿童版,重点关注:(1) 奖励-反馈敏感性 (额叶奖励相关积极性,RewP),(2) 对反馈的晚期注意力相关反应 (顶叶 P300),以及 (3) 注意力转向喜爱的刺激 (N2pc)。从行为上讲,正如预期的那样,青春期前儿童可以学习刺激-奖励结果关联,但表现水平各不相同。与学习优秀的学生相比,学习较差的学生表现出更大的 RewP 振幅。学习策略(即赢-输-留下-转移)由反馈诱发的 P300 振幅反映。最后,注意力会转移到待选择的刺激上,这一点由 N2pc 证明,但不会像成年人那样转移到奖励更高的刺激上。这些发现为青少年 RL 背后的神经过程提供了新的见解。
