2024 年灵活福利计划计划费率和灵活积分指南灵活福利计划资格 - 如果您是文图拉县的普通员工,并且每两周工资期有至少 40 小时的固定工作时间(VCHRP 中的“标准工作时间”),则您符合资格。如果您不符合灵活福利计划的资格,您仍可能有资格享受医疗计划。请联系县福利部门了解更多信息 - Benefits.ServiceRep@ventura.org 或 (805) 654-2570。有关具体计划信息,请访问我们的网站:https://hr.ventura.org/benefits。
抽象学习神经网络仅使用很少的可用信息是进口研究主题,具有巨大的应用潜力。在本文中,我们引入了一个强大的正规化程序,用于成像中反问题的变异建模。我们的常规器称为贴剂归一化流动器(PatchNR),涉及在很少的图像的小斑块上学习的归一化流。尤其是训练独立于考虑的逆问题,因此可以适用于在同一类图像上作用的不同远期操作员。通过研究斑块的分布与整个图像类别的分布,我们证明我们的模型确实是最大的后验方法。低剂量和限量角度计算机断层扫描(CT)以及材料图像的上溶质的数值示例表明,我们的方法提供了非常高质量的结果。该训练集仅包含六个用于CT的图像和一张用于超分辨率的图像。最后,我们将PatchNR与内部学习的想法结合在一起,直接从低分辨率观察中执行自然图像的超分辨率,而无需了解任何高分辨率图像。
Borissova 5,6,Natalia Fernandez-Vinson 5,Rachel Lees 7,Shelan Ofori 5,Kat Petrilli 7,Katie
据说我们的物种使用助记符(“记忆的魔法”)在大脑中刻有大量信息。然而,尚不清楚助记符如何影响记忆和神经基础是什么。在这项脑电图研究中,我们研究了助记符训练是否提高了加工效率和/或改变编码模式以支持记忆增强的假设。通过22天的数字图像助记符(世界一流麦克努斯主义者使用的定制记忆技术)进行22天的培训,一组儿童在训练后显示出短期记忆的增加,但增益有限。这种训练导致了定期的奇数神经模式(即,在序列中数字与奇数位置的数字编码期间,P200增强和theta功率的增强)。至关重要的是,P200和Theta功率效应预测了训练引起的记忆力的改善。这些发现提供了表明,表明弹药如何改变了功能性脑组织中反映的编码模式,以支持记忆增强。
多视图无监督的特征选择(MUFS)最近引起了相当大的关注,可以从原始的多视图数据中选择紧凑的代表性特征子集。尽管有希望的初步性能,但大多数以前的MUFS方法都无法探讨多视图数据的歧视能力。此外,他们通常使用光谱分析来维持几何结构,这将不可避免地增加参数选择的难度。为了解决这些问题,我们提出了一种新颖的MUFS方法,称为基于结构正规化的歧视性多视图无监督特征选择(SDFS)。具体来说,我们从不同视图中计算样本空间的相似性矩阵,并自动加权每个视图特定图表以学习共识相似性图,其中这两种类型的图形可以相互促进。此外,我们将学习的潜在表示为群集指标,并在没有引入其他参数的情况下采用图形正则化来维护数据的几何结构。此外,开发了具有理论收敛属性的简单而有效的迭代更新算法。在几个基准数据集上进行的广泛实验验证了该设计的模型是否优于几种最新的MUFS模型。©2023 Elsevier B.V.保留所有权利。
人类视觉在很大程度上仍未得到解释。计算机视觉在这方面取得了令人瞩目的进展,但目前仍不清楚人工神经网络在行为和神经层面上与人类物体视觉的近似程度。在这里,我们研究了机器物体视觉是否模仿人类物体视觉的表征层次结构,其实验设计允许测试动物和场景的域内表征,以及反映其现实世界上下文规律的跨域表征,例如在视觉环境中经常同时出现的动物场景对。我们发现,在物体识别中训练的 DCNN 在其后期处理阶段获得的表征可以紧密捕捉人类对动物及其典型场景同时出现的概念判断。同样,DCNN 的表征层次结构与特定领域的腹颞区到领域通用的前顶区中出现的表征转换显示出惊人的相似性。尽管有这些显著的相似性,但底层的信息处理却不同。神经网络学习类似于人类的物体-场景共现高级概念表示的能力取决于图像集中存在的物体-场景共现量,从而凸显了训练历史的根本作用。此外,尽管中/高级 DCNN 层代表了 VTC 中观察到的动物和场景的类别划分,但其信息内容显示出领域特定表示丰富度的降低。总之,通过测试域内和域间选择性,同时操纵上下文规律,我们揭示了人类和人工视觉系统所采用的信息处理策略中未知的相似之处和差异。
脑部计算机界面(BCI)技术提供了一种不依赖外围神经和肌肉的交流方式(Wolpaw等,2000)。全面的BCI系统涉及预处理,特征提取,信号分类和控制。这是一种直接将神经功能转化为外部产出的技术(Ramadan和Vasilakos,2017年)。最常用的脑电图(EEG)信号是事件相关的P300信号(Allison等,2020),稳态视觉引起的电势(Liavas等,1998)和运动成像(MI)信号(Pfurtscheller等人,1997年)。运动图像的最显着优势是其控制信号源自大脑的行动意图,因此不需要外部刺激(Abdulkader等,2015)。这种类型的BCI通常用于外部设备的运动控制,是当今最流行的BCI控制系统之一。但是,运动成像自发脑电图信号的信号噪声比率很低,并且受试者之间的特征有显着的单个差异。通常需要对传统的机器学习算法进行校准,以克服受试者之间的个体差异(Böttger等,2002; Saha等,2017),这一过程降低了BCI系统的效率。为了解决这一缺点,研究人员发现,使用转移学习算法来减少新用户,设备和任务的校准是有效的。近年来,转移学习使用了来自源域中的数据或信息,以帮助目标域通过使用源域(现有主题)数据来校准目标域(新主题)数据(Pan and Yang,2009)。最终,可以用带注释的几个或没有样本来判断目标域,这可以解决训练数据的基本分布与在某些条件下的测试数据之间的不匹配问题。
2023 年 3 月 30 日发布 本年度国家统计公告提供了 2022 年英国正规武装部队服役期间死亡人数的摘要信息,以及 2013-2022 年十年期间的趋势。此信息更新了以前的公告,并包括 2022 年的新数据。提供的信息是根据国防统计局 2023 年 2 月 21 日保存的数据汇编而成的。数据针对三军和每个军种分别提供;皇家海军(皇家海军和皇家海军陆战队)、陆军(包括廓尔喀人)和皇家空军 (RAF)。本新闻稿提供了 2013-2022 年十年期间主要死亡原因类别的信息,还提供了与英国一般人口和在职武装部队预备役人员死亡人数的比较。2022 年重点和趋势
Carmine Capacchione, [A] [e] Fabia Grisi, [A] [e] Marina Lamberti, [A] [e] Mina Mazzeo, [A] [e] Barbara Milani, [B] [e] Stefano Milione, [e] Daniela Pappalardo, [c] [e] Cristiano Zuccaccia [D] [e] and Claudio pellecchia* [a]