。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2021 年 12 月 8 日发布了此版本。;https://doi.org/10.1101/2021.12.08.471721 doi: bioRxiv preprint
严重的急性呼吸综合症冠状病毒2(SARS-COV-2)感染主要影响呼吸系统,但可能引起血液学改变,例如贫血,淋巴细胞减少和血小板减少症。先前的研究报告说,SARS-COV-2有效地感染了造血茎和祖细胞(HSPC)。但是,尚未描述对造血和免疫重建的后续影响。在这里,我们评估了使用SARS-COV-2 Omicron变体假病毒(PSV)的脐带血液衍生的HSPC感染的病理影响。OMICRON PSV感染的HSPC的转录组分析揭示了涉及炎症,衰老和NLRP3炎症的基因的上调,这表明插入的潜在触发触发器。OMICROR PSV感染的HSPC呈现的多重祖细胞数量减少(粒细胞 - 红细胞 - 巨噬细胞 - 巨噬细胞 - 巨核细胞群形成单位)ex vivo和vivo和重生的造血干细胞(Ki-67--hcd34 + s) γ空小鼠模型(Omicron小鼠)。此外,Omicron PSV感染诱导了HSPC的髓样偏差。用抗病毒剂纳米摄影烯氧化物治疗,部分缓解了体外和体内的髓样偏置和炎症表型。这些发现提供了有关SARS-COV-2感染的造血和免疫作用异常的见解,并突出了潜在的治疗干预措施。
先前的工作提出,以最佳方式平衡对身体和大脑发育的能量消耗会导致发展过程中体细胞和神经认知生长之间的负相关关系。到目前为止,一个重要的问题在很大程度上被忽略了,这是这种充满活力的权衡受到早期生活环境因素的影响。在这项研究中,我们估计了神经认知(通过工作记忆能力)与体细胞(通过身体质量指数)发育轨迹之间的关联,同时考虑到早期生命逆境的多个维度。我们初始生长曲线模型的结果与男孩和男孩的大脑 - 身体折衷是一致的。在随后的模型中,我们表明早期生命逆境与神经认知生长轨迹的体细胞和负相关是积极的,尽管它们之间的直接负耦合保持一致。最后,将剥夺,威胁和不可预测性的影响分开的多阶段逆境模型表明,剥夺的维度(反映了缺乏获得资源和认知刺激)对躯体和神经认知的增长模式造成了最大的贡献。这些结果表明,在开发过程中,个人平衡这两种生物结构之间的能量的方式部分与通过表型可塑性的环境影响有关。
YAP1(是相关的蛋白1)是河马SIG NALING途径中至关重要的转录共激活因子,主要通过磷酸化调节。当磷酸化时,YAP1通常保留在细胞质中,从而防止其转移到核向Acti vate转录中。因此,抑制YAP1磷酸化可以增加其核浓度,增强其转录活性并影响特定靶基因的表达[3]。研究表明,激活YAP1支持心肌细胞的生长和生存,可能会缓解心肌肥大和HF [4,5]。升高的YAP1水平还会导致Akt磷酸化增加,从而抑制GSK3β,从而增强了FOXM1的表达并有助于心肌细胞肥大和纤维化[6]。在那里,靶向YAP1激活可能是逆转病理心肌肥大的至关重要方法。
抽象的先天免疫在防止病原微生物的侵袭中起着至关重要的作用。然而,先天免疫是一把双刃剑,其过度激活对免疫稳态有害,甚至导致受感染宿主的“细胞因子风暴”。宿主开发了一系列负调节机制,以衡量免疫反应。在这里,我们报告了由miRNA介导的鸡肉先天免疫的负调节机制。在GEO数据库中,我们发现MiR-126-5p在感染RNA病毒感染的鸡中明显上调。然后,通过细胞模型和体内检测进一步显示了RNA病毒对miR-126-5p的上调。miR-126-5p的过表达显着抑制了由RNA病毒诱导的干扰素和炎性细胞因子相关基因的表达。miR-126-5p表达敲低后,取得了相反的结果。生物信息学分析确定TRAF3是miR-126-5p的候选靶基因。在实验上,miR-126-5p可以靶向TRAF3,如miR-126-5p对TRAF3内源性表达的影响以及TRAF3 3'UTR驱动的荧光素酶报道器测定法。此外,我们证明了miR-126-5p通过通过共表达测定法阻断MAVS-TRAF3-TBK1轴来负调节的先天免疫性。总体而言,我们的结果表明,miR-126-5p参与了鸡肉先天免疫的负调节,这可能有助于维持免疫平衡。关键字:鸡肉,mir-126-5p,traf3,RNA病毒,先天免疫
Aditi Verma,Reddy Peera Kommaddi,Barathan Gnanabharathi,Etienne Hirsch,Vijayalakshmi Ravindranath。在帕金森氏病中,对多巴胺能神经元的发育和分化至关重要的基因被下调。神经传播杂志,2023,130(4),pp.495-512。10.1007/S00702-023-02604-X。Inserm-04002894
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过PEER REVIVE的认证)Preprint Preprint the版权所有此版本,该版本于2025年2月14日发布。 https://doi.org/10.1101/2025.02.11.25322052 doi:medrxiv preprint
Ce´ line Revenu, 1,2,6 Corinne Lebreton, 3,6 Magda Cannata Serio, 4,6 Marion Rosello, 1,2 Re´ mi Duclaux-Loras, 3 Karine Duroure, 1,2 Ophe´ lie Nicolle, 5 Fanny Eggeler, 2 Marie-The´ re` se Prospe´ ri, 4 Julie Stoufflet, 1 Juliette Vougny, 1 Priscilla Le´ pine, 4 Gre´ goire Michaux, 5 Nadine Cerf-Bensussan, 3 Evelyne Coudrier, 4 Franck Perez, 4 Marianna Parlato, 3,7, * 和 Filippo Del Bene 1,2,7,8, * 1 居里研究所,PSL 研究大学,INSERM U934,CNRS UMR3215,75248 Paris Cedex,法国 2索邦大学、法国国家健康与医学研究院、法国国家科学研究院、视觉研究所,75012 巴黎,法国 3 法国国家健康与医学研究院、UMR1163、肠道免疫实验室和想象研究所,75015 巴黎,法国 4 居里研究所、巴黎圣日耳曼研究大学、法国国家科学研究院、UMR 144 巴黎,法国 5 雷恩大学、法国国家科学研究院、IGDR(雷恩遗传与发展研究所),UMR 6290,35000 雷恩,法国 6 这些作者贡献相同 7 这些作者贡献相同 8 主要联系人 *通信地址:marianna.parlato@inserm.fr (MP)、filippo.del-bene@inserm.fr (FDB) https://doi.org/10.1016/j.celrep.2024.114941
摘要脆弱的X综合征(FXS)代表了遗传性智力残疾的最普遍形式,是自闭症谱系障碍的第一个单根原因。fxs是由于不存在RNA结合蛋白FMRP(脆弱的X信使核糖核蛋白)而引起的。神经元迁移是大脑发育的重要步骤,允许神经元从其生发壁nir将其移动到最终整合位点。FMRP在神经元迁移中的确切作用在很大程度上尚未开发。使用FMR1 -NULL小鼠中产后鼻迁移(RMS)神经元的实时成像,我们观察到,FMRP的缺失会导致神经元迁移延迟和轨迹改变,与中心体运动的缺陷有关。RNA干扰诱导的FMR1的敲低表明这些迁移缺陷是细胞自主的。值得注意的是,与这些迁移缺陷有关的主要FMRP mRNA靶标是微管相关蛋白1b(MAP1B)。击倒MAP1B表达有效地拯救了大多数观察到的迁移缺陷。最后,我们通过证明没有FMRP的缺乏在迁移神经元核的微管的笼子中诱导缺陷来阐明发挥作用时的分子机制,而迁移神经元核的细胞核的缺陷,这是由MAP1B敲击救出的。我们的发现揭示了FMRP与MAP1B合作的新型神经发育作用,通过影响微管细胞骨架来共同策划神经元迁移。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作