1。引言不可凝聚的气体(NCG)是所有地热系统中都存在的天然气体,从世界各种系统的各种系统中的小到大的质量分数(<0.1 wt%至> 3 wt%> 3 wt%,代表NCGS在整个储层中使用NCGS的比例,在本文中使用了这一定义)。二氧化碳(CO 2)通常主导着NCG化妆品,但其他气体(例如硫化氢(H 2 S),甲烷(CH 4)和其他气体经常存在。The quantity and the relative proportion of each NCG gas is primarily driven as a function of geology, of magma type/heat source, and subsurface stratigraphy that fluids encounter (Fridriksson et al, 2017).作为排放,NCG的释放可能会不利,包括对温室气体排放,空气质量和环境危害的贡献(Richardson and Webbison,2024年)。然而,在自流动(自流式)生产井中,NCG可以通过提高可交付性来使生产受益:井对自流到给定的井口压力的能力。重新注射NCG既可以抵消排放的负面影响,又可以延长交付性益处。
4。由于该功能将取代天然气产量,因此如何为Bayu-undan的重新注册设施提供动力?有人建议将柴油运送到bayu-dundan提供所需的燃料。在平台上可能需要一个大型储罐,该储罐将位于巴亚岛田地上方(图1),以及恒定的燃油消耗以操作CO 2重新注入过程。这是对从直升机从大陆渡轮工人到平台的生命周期排放及其在平台上工作时的能源消耗的补充。必须在批准之前估算并公开宣布的这些额外排放。santos需要详细说明如何将CO 2注入Bayu-undan水库,以及将在Bayu-undan安装哪些基础架构将CO 2注入储层中。
地热发电厂 (GPP) 的地热流体含有高含量的不凝性气体 (NCG),已证明其能源生产会对环境产生影响,如果不采取纠正措施,这种影响可能会很严重。位于土耳其 (Denizli) 的 Kizildere 3 U1 地热发电厂的地热流体含有高百分比的 CO 2 ,其中 99% 的 NCG 部分(占地热流体质量的 3%)是作为相关案例研究来实施一项新创新,即重新注入 NCG,以减少排放到大气中的 NCG 量。为了计算工厂目前造成的环境影响(基线);以及通过创新(重新注入)可以实现的潜在环境影响减少量,我们开发了生命周期评估 (LCA) 计算。收集了能源转换周期所有相关阶段的原始数据,并在必要时补充了来自其他地热发电厂研究的二手数据。基线环境评估的主要结果表明,由于发电厂建筑施工、发电设备和分布式机械及基础设施中使用的材料,建设阶段是影响最大的阶段;运营阶段的影响主要由地热流体成分决定。从这个意义上讲,在土耳其站点将二氧化碳回注到水库将防止试点站点每年排放 1,700 吨,以及 GPP 生命周期内排放的总排放量的 10%。
摘要 - 在本文中,ORC热效率提高了22.54%,ORC利用率增加了22.79%,而ORC的Exergetic效率则增加了HMB设计的22.78%。Author has analysis to change the specification of Feed Pump, and additional Preheater, result analysis, when increasing n-pentane flow rate and saturation temperature, the heat (Q) flowing into the reinjection well decreased from 52502.9 kW to 23488.17 kW, and exergy destruction decreased from 28536 kW to 20427 kW where this exergy injected into the reinjection well, means that some energy and exergy has been在流入重新注入系统之前使用。在涡轮机上,总功率(W涡轮机)增加了25.40%,总功率修改为17418 kW,从总功率为13890 kW,并增加净功率15102 kW和12050 kW。在ACHE中,将热量(Q)从76030 kW增加到96633 kW,需要冷却N-戊烷,增加热量(Q),然后增加功率风扇电动机14.66%,而空气流量从218798 ACFM增加到218798 ACFM,从218798 ACFM增加到294442 ACFM,需要冷却n-浓度。进料泵的功率从1215 kW增加到31.69%至1600 kW,这是因为叶轮直径的变化会导致流量增加,压力和运动功率需要旋转泵。在恢复器上的工作减少(Q)47.93%,这是因为加热N-戊烷达到饱和温度,这是由于存在额外的预热器而辅助的。
海湾城市为安德鲁斯再生医学中心启动教育,研究和设施提供了30万美元的金融赠款。此外,马来西亚的一家公司同意在六年内获得3,000,000美元的赠款,以研究涉及干细胞收集和重新注入的新程序。这种拨款将与这笔赠款产生协同作用,该赠款将使再生医学中心在干细胞研究中成为美国的领导者。
为了最大程度地利用低温可再生地热源,DH网络可以利用由于在低温下运行而由于翻新而减少的建筑物的热量需求。改善DH系统和建筑装置,以降低的供应和回报温度来操作,不仅会提高DH系统的效率,而且还大大增加了可行地热源的量。降低的供应温度将进一步提高地热和热泵工厂的效率,在那里使用电热泵来增强地热植物的温度。降低的重新注入温度将提高地热的效率,因为提取相同量的热量需要更少的泵送。本文包括对包括地热系统在内的Thisted DH系统的主要特征的描述。在低温下操作DH系统的好处
摘要:浅层开环地热系统通过双抽水井和回注井在含水层中产生热和冷储备。布鲁塞尔市中心的三栋相邻建筑采用了这种含水层热能存储 (ATES) 系统。其中两栋建筑利用了由新生代砂岩组成的同一含水层,分别于 2014 年和 2017 年开始运营。Bult é 等人 (2021) 开发的先前水文地质模型表明,其中一个系统的热不平衡如何危及该上部含水层的热状态。在这里,研究并模拟了与位于古生代基岩深层含水层中的较新的第三个 ATES 系统的相互作用。在根据两个含水层的地下水流条件进行校准后,使用 3D 水文地质模型来模拟两个开发含水层中的三个地热装置的累积效应。模拟结果表明,尽管两个含水层之间的水力相互作用非常弱(如观察到的不同电位水头所示),但两个含水层之间通过隔水层进行热交换。幸运的是,这些热交换不足以对单个地热系统的效率产生重大影响。此外,这项研究清楚地表明,在下层含水层中增加第三个系统,在 10 月至 3 月期间平均加热功率为 286 kW,在 4 月至 9 月期间平均冷却功率相同,是有效的。
不可固化的气体(NCG)通常包含CO 2,H 2 S,H 2和N 2。氧气也可能存在于凝结蒸汽涡轮机的主要冷凝器中的真空条件下,从空气进入的气体中存在。鉴于当前全球范围内强调将CO 2排放到大气中,因此越来越有兴趣从NCG流中捕获CO 2以进行潜在利用(例如,在温室,饮料,电子饮料中,用于E-Fuels,以及增强的油回收率),以及序列序列的(例如,序列反射)。在淡水或海水丰富的世界部分中,CO 2可以通过在吸收柱中与凉水接触,从而捕获CO 2。但是,NCG流中氧的存在可能会使捕获过程显着复杂。AS CO 2用于利用或隔离,其余物种(例如,最重要的是H 2和O 2)集中在残留的流中。因此,过程方案必须确保避免危险的燃料(例如H 2)和氧化剂(例如O 2)的危险浓度。这一要求限制残留流中燃料和氧化剂浓度的要求可以显着减少可以安全回收的CO 2的量。本文提出了一个新颖的概念,可以使用预言仪接触主吸收柱上上游的水和NCG流,以将CO 2和H 2 s的大部分吸收到水相中。在处理方案开始时,前培训概念可以管理易燃物种,从而使在处理方案的后期更容易地制作安全的气体产品流(即低氧气)进行固相或利用。
1. 背景 KenGen 是目前该国最大的发电机组,占该行业有效容量的 60%。KenGen 的装机容量由地热 (799 兆瓦)、水力 (825.7 兆瓦)、风能 (25.5 兆瓦) 和火力 (180 兆瓦) 组成。肯尼亚 2022-2041 年最低成本电力发展计划 (LCPDP) 报告预测,能源需求预计平均增长 5.22%,而峰值负荷预计平均增长 5.34%。能源部门有多个已承诺的发电项目正在实施中,由 KenGen 和独立电力生产商 (IPP) 开发。此外,肯尼亚还与邻国签订了电力交换双边协议。当前的电网正面临着近期未曾出现过的挑战。间歇性可再生能源尤其是风能和太阳能发电量显著增加。这对电网有利,因为可再生能源发电量增加,取代了中速柴油 (MSD) 电厂和燃气轮机 (GT) 发电量更昂贵的热电。然而,这种改进的可变可再生能源 (VRE) 容量也使电网面临一些关键挑战,因为在风能可用的非高峰时段,需求较低,而且它取代了其他形式的发电,特别是地热发电。在这些低峰时段,很难通过节流地热井来减少蒸汽发电,因此唯一可用的选择是排出多余的地热蒸汽。由于排出的蒸汽无法回收再注入资源区,情况变得更糟,因此降低了地热田的可持续性。另一个令人担忧的问题是电网的稳定性。间歇性电源往往不可预测,因此它们需要其他能够弥补资源间歇性的能源。这意味着,为了将可再生能源整合到网络中,网络中需要其他形式的能源发电或辅助服务来帮助提高电网的稳定性。根据 LCPDP 2024-2043 的建议,到 2026 年需要加快 250MW BESS 的开发。根据该报告,预计地热容量将在规划期内以年均 36% 的年均增长率对总公司容量贡献最高。电池储能系统和抽水蓄能将对电网稳定做出重大贡献,到 2043 年,这两种技术的总容量将占固定容量的 14%。值得注意的是,预计到 2035 年,所有柴油和燃气发电厂都将退役。按照政府到 2030 年实现 100% 绿色能源的目标,到计划期结束时,56% 的固定容量将是可再生能源,其中 VRE 技术将在 2043 年贡献 5%。根据这些建议和调查结果,值得注意的是,BESS 将在系统中发挥关键作用,无论是在能源转换方面,还是作为辅助服务提供商方面。