这是查尔斯大学 2023/24 年开设的“弯曲时空中的量子信息”课程的学习教材。该教材以爱德华多·马丁-马丁内斯在滑铁卢大学圆周研究所开设的类似课程为基础,并源自最近的多篇论文。基本上,我们将涉及相对论量子信息 (RQI) 研究的一些主题,这是一门在 2010 年左右出现的新学科,旨在合并三个领域:广义相对论 (GR)、量子场论 (QFT) 和量子信息 (QI)。主要思想是将相对论描述纳入 QI 处理,并从 QI 的角度研究时空结构和重力性质。例如,我们想解决以下问题:
Abstract: Information located in an entanglement island in semiclassical gravity can be nonperturbatively reconstructed from distant radiation, implying a radical breakdown of effective field theory. We show that this occurs well outside of the black hole stretched horizon. We compute the island associated to large-angular momentum Hawking modes of a four- dimensional Schwarzschild black hole. These modes typically fall back into the black hole but can be extracted to infinity by relativistic strings or, more abstractly, by asymptotic boundary operators constructed using the timelike tube theorem. Remarkably, we find that their island can protrude a distance of order p ℓ p r hor outside the horizon. This is parametrically larger than the Planck scale ℓ p and is comparable to the Bohr radius for supermassive black holes. Therefore, in principle, a distant observer can determine experimentally whether the black hole information paradox is resolved by complementarity, or by a firewall.
摘要。在本文中,我们研究了由洛伦兹提升引起的单个粒子纠缠。我们将粒子描述为自由狄拉克方程的解决方案,一种狄拉克·比斯皮诺(Dirac Bispinor),并将诱导的动量旋转纠缠与在相对论旋转1/2状态的广泛考虑的框架中获得的结果进行了比较。两种方法的自旋线性熵在超级主义极限中一致。我们还验证了双旋格纠缠与双旋转病例的旋转熵之间的不同,表明涉及Dirac Bispinor状态的自由度:动量,自旋,自旋和本质平等的真正多部分纠缠。Dirac Bispinors属于完整Lorentz群体的不可约表示的事实(也包括均等作为对称性),是这种非平凡结构的最终原因。
在4维Minkowski空间,Lorentz标量,4个矢量和4个量的正交转换中,Minkowski空间中的4次量,协变形式的力学法律以及适当的时间间隔,4个矢量位置,4个矢量的位置,4个载体速度和4个载体的速度和4个载体的力量,纽顿的力量的形式相互关系,相互关系,相互关系。结果:学生将能够记住并得出四个矢量符号中的哈密顿力学,小振荡,规范变换,僵化的身体动力学和相对论力学的各种公式。他们将能够分析各种概念并解决与所获得的知识有关的问题。将所学的机械配方应用于不同主题的实践物理/科学问题,并了解其局限性及其对量子力学的影响。教科书:
基于相对论输运模型ART,利用MIT袋模型将强子状态方程扩展为具有相变,研究了相对论重离子碰撞中形成的致密核物质的相变特性。在束流能量为2、4、6和8 GeV/核子的Au + Au碰撞中,用不同的状态方程计算了质子的侧向和定向流。与现有的AGS实验数据相比,一级相变的边界大致被限制在2.5-4倍饱和密度范围内,温度约为64-94 MeV。这些约束对正在进行的RHIC束流能量扫描-II计划研究QCD物质相图很有用。
在非相对论量子力学 (NRQM) 中,预测量通常以有限时间或静止状态下的瞬时状态的属性形式出现。当 QED 尘埃落定时,预测以散射振幅的形式出现,这涉及系统相距无限远并因此假设为自由时,在无限早期或晚期极限下的渐近状态。这对于预测散射实验的结果非常有用,但最近人们的注意力转向了如何模拟局部测量的问题:涉及在时空局部区域测量相对论量子场的实验。例如,这是相对论量子信息中的一个重要问题,它致力于用相对论量子系统对信息论过程进行理论和实验处理。在过去几年中,已经开发了使用 QFT 表示的系统的局部测量的正式测量理论,包括 [2-5]。量子场局部测量的表示已成为紧迫问题的另一个领域是量子引力。例如,最近关于引力诱导纠缠是否意味着引力必须量化的争论,也引发了关于如何建模和解释量子场的局部测量的问题[6,7]。在本文中,我们将通过回顾 QFT 系统局部测量建模历史上的几个事件,将这些最新发展放在历史背景中。为了理解使用 QFT 建模局部测量的尝试的平行历史,有必要首先了解 QED 是如何利用散射理论来表述的。Blum [8] 对这一发展进行了全面的历史记录。他将这种从关注 NRQM 中的状态到 Dyson 的 QED 表述中的散射理论的历史转变描述为库恩范式转变,因为它构成了从理论中要计算什么的范式问题的重大变化[8,p.46]。 Blum 通过追溯 20 世纪 30 年代和 40 年代相对论量子理论的两条发展路线,对量子态如何“消亡” 1 提供了一个富有启发性的解释,这两条发展路线为概念的转变奠定了基础,一条源于海森堡的 S 矩阵理论,另一条源于惠勒-费曼电动力学。正如 Blum 所解释的那样,这种范式转变既是由获得明确的相对论量子理论表述的迫切需要推动的,也是由对计算可处理的理论的需求推动的。重要的实验类型也发生了相关的转变,从 20 世纪 30 年代的光谱实验到宇宙射线实验,再到粒子加速器的散射实验 [ 8 ,第 49、78 页]。在他的历史研究的最后,Blum 提出了以下问题:
摘要:我们利用相对论量子力学来开发通用量子场论基础,适用于理解、分析和设计通用量子天线,以用于安全量子通信系统和其他应用。本文将量子天线视为能够产生我们称之为“量子辐射”的抽象源系统。我们从通用相对论框架出发,其中量子天线系统以基本量子时空场建模。在开发一个框架来解释如何使用微扰相对论量子场论 (QFT) 的方法理解量子辐射之后,我们深入研究了受控抽象源函数的量子辐射问题。我们在中性 Klein-Gordon 线性量子天线的情况下说明了该理论,概述了构建源 - 接收器量子天线系统格林函数的一般方法,后者可用于计算各种候选角量子辐射方向性和增益模式,类似于经典天线理论中的相应概念。我们预计,所提出的形式体系可能会得到扩展,以处理量子通信应用中大量其他可能的受控辐射类型,例如标量、费米子和玻色子粒子的产生,其中每种粒子都可能是无质量的,也可能是质量的。因此,我们的目标是将天线的概念扩展到电磁波之外,现在我们提出的基于 QFT 的量子天线系统概念可用于探索任何类型的相对论粒子的受控辐射场景,即通过部署新的非标准量子信息传输载体(如质量光子、自旋 1/2 粒子、引力子、反粒子、高自旋粒子等),有效地超越众所周知的光子系统的情况。
时间的操作方法是相对论理论的基石,正如适当的时间概念所证明的那样。在标准量子力学中,时间是外部阶段。最近,已经尝试了许多尝试在关系框架内延长适当时间的量子力学概念。在这里,我们使用类似的想法与相对论的质量能量等效性一起研究具有内部时钟系统的加速量量子粒子。我们表明,从粒子的内部时钟的角度来看,随之而来的演变是非热的。此结果不依赖于时钟的特定影响。是一个特别的结果,我们证明了两个重力相互作用粒子的有效哈密顿素体从任何一个粒子的时钟的角度都是非热的。
量子力学改变了我们对物理世界的看法,在过去的二十年中,物理系统的量化特征也已成为技术不同分支的资源[1,2]。尤其是,当计量学遇到量子机械时,就可以使用整个新的新特征来提高物理测量的精度,并构想新颖的量子增强方案以表征信号和设备[3-5]。相对论也改变了物理的范例,并发现了相关的技术应用[6]。因此,是否可以共同利用相对论和量子机械性能以提高物理测量的精度。在本文中,我们遵循了这一想法,并证明了范式相对论特征,重力时间扩张确实可能代表了可以与量子叠加一起使用的资源,以证明重力常数的估计或其变化。
