1.1.1。球键故障球键故障是微电子包装中最常见的故障模式[2]。通常是由于热老化引起的金属间生长。来自金属间层中的微裂纹并削弱了键[3]。球键合AU,Cu,Ag基线到Al金属化形成热老化的金属间化合物(铝制)。[4]在不同的金属超声波或热音线键中有限的界面IMC形成会增加键强度。但是,过度的IMC形成可能导致债券的性能下降。IMC的厚度增加会产生较高的电阻,从而导致流动流动时较高的热量产生。这会产生乘数效应,因为由于电阻率升高而引起的加热促进了粘合界面中其他IMC的形成[5]。imcs的形成以及界面处的相关空隙和裂纹决定键的强度和可靠性。IMC的形成对粘结强度有益,但是它们的过度生长可以增加键和接触电阻的脆性,从而导致键失败[6]。
氧化还原液流电池 (RFB) 是一种电化学液流系统,将能量存储在可溶性氧化还原对中,通常允许分离存储容量和功率输出。能量以包含氧化还原系统的两种液体介质的形式存储。这些液体被泵送通过电池,在那里发生电化学转换。RFB 的一个有趣特征是容量和功率的独立可扩展性。1 因此,如果需要存储更多能量,则不需要更大的电极,而传统电池则需要这样做,因为传统电池的能量存储和转换并不分离。这使得 RFB 对于需要存储大量能量但对最大功率的要求适中的大规模存储应用特别有趣。最重要的 RFB 类型是基于钒的(氧化还原系统 V 2 + /V 3 + 在一侧,V 4 + /V 5 + 在另一侧)。参考文献 2、3 中报告了 RFB 技术的详细描述。详细示意图可在参考文献 4 中找到。
高可靠性组织 (HRO) 需要合作来应对超越组织边界的风险。HRO 文献尚未研究创建组织间可靠性的挑战,而协作文献可以进一步探讨利益相关者的优先事项如何在协作中占据主导地位。本研究结合这些文献,以确定高可靠性协作 (HRC) 的不断增长的领域。根据两年的社区紧急协作民族志研究,该研究认为,交流翻译构成了 HRC,并有助于理解 HRO 和非 HRO 属于共享协作框架。这些翻译对于创建可靠性是必要的,但也需要在协作利益相关者之间建立协商秩序。本研究发现,遏制和控制利益相关者可以成为协作的激励因素,并且协作决策受到利益相关者对紧迫性的要求的影响。关键词:跨组织协作、高可靠性组织、沟通作为组织的构成要素、应急管理、组织沟通
摘要:确保长期可靠运行是当今电子系统面临的最大挑战之一。元件对各种电气、热、机械、化学和电磁应力的脆弱性增加,对实现各种关键任务应用所需的可靠性构成了巨大威胁。降额可以定义为将设备上的电气、热和机械应力限制在其规定或已证实的能力以下的水平,以提高可靠性。如果希望系统可靠,那么主要因素之一必须是保守的设计方法,包括部件降额。许多制造商意识到需要降低电子和机电部件的额定值,因此制定了内部降额实践指南。在本项目中,选择了用于航空航天应用的陷波滤波器电路。将使用 E-CAD 工具进行电路模拟。将按照 MIL-STD-975A 中给出的方法进行进一步的降额分析,并提供符合此标准的设计裕度。任何产品成功的关键在于其可生产性、质量和可靠性。开发新产品、制作原型并验证其性能需要付出大量努力。如果要大批量生产并尽量减少拒收,则需要付出更多努力。拒收数量最少或首次成品率提高可节省生产成本、测试时间和资源。因此,它有助于降低产品成本。还要求交付给客户的产品在其预期的生命周期操作压力下能够令人满意地运行而不会出现故障。它应该在其预期的使用寿命内或需要运行时继续保持这种性能,这一因素称为可靠性。可靠的产品性能可提高客户满意度并为制造商树立品牌。组件对各种电气、热、机械、化学和电磁应力的脆弱性增加,对实现各种关键任务应用所需的可靠性构成了巨大威胁。降额是在低于部件额定值的应力条件下运行的做法。简介:
提出了一种评估飞机发动机监测数据的新方法。通常,预测和健康管理系统使用某些发动机部件的退化过程知识以及专业专家意见来预测剩余使用寿命 (RUL)。出现了新的数据驱动方法,可以在不依赖这种昂贵的过程的情况下提供准确的诊断。然而,它们中的大多数都缺乏解释组件来理解模型学习和/或数据的性质。为了克服这一差距,我们提出了一种基于变分编码的新方法。该模型由一个循环编码器和一个回归模型组成:编码器学习将输入数据压缩到潜在空间,以此为基础构建一个自解释的地图,可以直观地评估飞机发动机的劣化率。获得这样一个潜在空间是通过一个由变分推理指导的新成本函数和一个惩罚预测误差的项来规范化的。因此,不仅可以实现可解释的评估,而且还可以实现显著的预测准确性,优于 NASA 流行的模拟数据集 C-MAPSS 上的大多数最先进的方法。此外,我们利用实际涡扇发动机的数据演示了我们的方法在真实场景中的应用。
电力电子在各种 HiRel 领域得到广泛应用,包括航天、航空、汽车和其他相关领域。为了获得理想的 MTBF 和 MTTR,需要许多特殊的设计标准、关键的质量保证和广泛的测试。随着时间的推移,这些设计标准、质量标准和测试方法不断发展,如果正确实施,它们将在恶劣环境下实现长期可靠性。为了实现电力电子的高可靠性,本文提到并简要解释了推荐的方法和注意事项。空间应用需要一些额外的考虑因素,例如对总电离剂量 (TID)、单粒子效应 (SEE)、ELDRS、中子效应的辐射硬度;功能冗余;由于真空而通过传导和/或辐射散热;冲击和振动以及重量和体积限制。太空应用还需要数十年的无人值守长期可靠性以及通过遥控指令进行远程操作和通过遥测进行性能监控。MOSFET 和肖特基的抗辐射能力需要特殊的设计和制造技术,而电源管理 IC 则需要结合“设计抗辐射能力”和其他冗余考虑的技术。军事和商业航空领域对电力电子的可靠性提出了同样严格的限制,并基于人类安全做出了某些特殊考虑。本文讨论了所有这些方面,并概述了过去几十年来该主题的发展变化 1。介绍
Argo Consulting................................................23 ARMS 可靠性.................封底内页 AssetAnalytix..................................................15 AssetScan..............................................................26 Banetti..............................................................27 Bentley Systems........................................7, 19 Checkfluid.............................................................* Des-Case........................................封底 故障预防.........................................................15 Fluke...................................................................47 Full Spectrum Diagnostics................................50 Infralogix.............................................................* IRISS.........................................................................1 JMS Software......................................................13