合同预测性维护 实施新的 PdM 计划或重振现有计划可能面临许多挑战。这些挑战包括缺乏数据收集和数据分析方面的熟练资源,以及缺乏适当的技术。许多公司为快速实施并因此快速实现可靠性提高带来的好处而采取的一种策略是与 SKF 签订合同来执行该计划,包括提供最新的数据收集技术。通过这种方式,在现有员工逐渐适应新方法的同时,客户可以享受业务利益。SKF 可以继续提供这些服务和技术,或者客户可以制定技术采购预算并计划逐步接管该计划。
FT/IR-4000 系列中使用的带角锥镜的 45 度迈克尔逊干涉仪可提供研究级光谱仪中常见的同类领先性能。主要设计用于中红外区域,也可用于专用的近红外和远红外应用。坚固的铸铝结构,加上先进的光学和电气元件,可提供高性能和耐用性。带有单片金刚石的高通量 ATR PRO ONE 可用于许多采样应用。FT/IR-4000 系列还具有许多其他测量选项,从简单的透射和气体分析到散射和镜面反射。FT/IR-4000 非常适合 QA/QC、教学和简单研究。FT/IR-4700 具有 0.4cm -1 的分辨率,可用于更高分辨率的气体分析。
本报告根据 OLRT RAM 计划 [3] 编制,旨在吸收和发展项目 RAM 报告 [4]、[5]、[61、[7]、[8] 中提出的零件数量可靠性预测与 FMEA 建模 FMEA 建模 [11)、[12)、[131、[14)、[15)、[16],以得出铁路级 RAM 分析,预测服务可用性性能、扰动水平,并可作为未来开发和优化维护策略的先兆。
Predix 资产绩效管理 (Predix APM) 是一套软件和服务解决方案,旨在帮助优化您的资产绩效。Predix APM 可提高资产可靠性和可用性,同时优化维护成本、降低运营风险并降低总拥有成本 (TCO)。该套件连接不同的数据源并使用高级分析将数据转化为可操作的见解,同时促进整个组织的协作和知识管理。Predix APM 适用于所有设备、所有 OEM 和所有行业、整个工厂和整个车队。Predix APM 建立在 Predix 平台上,为组织提供了开发新分析和应用程序的灵活性,使其能够灵活地满足不断变化的需求。
** Dr. K.P.Yadav 介绍 软件可靠性是评估软件质量的重要因素。软件可靠性是指软件在指定条件下在指定时间内不会导致系统故障的可能性。根据 ISO/IEC 25010:2011 产品质量模型,可靠性定义为系统、组件或产品在指定条件下在指定时间内执行指定功能的程度。软件可靠性是质量模型八个功能特性中影响软件系统效率的关键因素之一,该特性进一步分为成熟度、可用性、容错性和可用性等子特性。与硬件一样,软件的可靠性也可以测量和评估。如今,软件在越来越多的行业中发挥着越来越重要的作用。随着现代工业系统日益复杂,软件可靠性的保证也愈加困难。目前,尽管已经开展了大量研究,并有大量应用投入使用,但软件可靠性领域还有很长的路要走。计算机系统分为硬件和软件。硬件包括电子外围设备、设备和设备等。软件是使用硬件组件执行的程序。它指示硬件组件做什么。指令集称为程序,编写此类程序的过程称为编程。程序可以用任何编程语言编写,如 C、CPP、Visual Basics 和 Java 等。这些编程语言必须转换为机器语言,因为它们可以被操作系统理解。软件由计算机程序组成,计算机程序是计算机的指令序列。编写(或编码)程序的过程称为编程,执行此任务的个人称为程序员。软件在人类生活的几乎所有领域都变得越来越重要,例如电视、手机、智能设备和登录任何互联网应用程序等;
4.1 评估子系统可靠性 47 4.2 子系统可靠性评估示例 48 4.3 简单串联系统的可靠性评估 49 4.3.1 简单串联配置的网络模型 50 4.4 引入冗余概念 52 4.4.1 冗余技术的类型 52 4.4.2 简单并联冗余配置 53 4.5 双模并联/串联和串并联配置 56 4.6 部分冗余 57 4.7 一些复杂的冗余配置 57 4.7.1 K Out of N 网络 58 4.7.2 多数表决冗余 59 4.7.3 操作冗余 60 4.8 最佳冗余级别 60 4.9 现实世界建模技术简介62 4.9.1 将领域转换为有用的计算机表示 .62 4.9.2 受控迭代系统开发生命周期 63 4.10 数据驱动系统 64 4.11 数据建模 65 4.12 对目标系统的功能方面进行建模 67 4.13 概念建模:面向对象的方法 68 4.13.1 面向对象建模 69
可靠性理论的基础工作为根据部件可靠性知识计算复杂系统可靠性的评估以及从相对不可靠的部件构建可靠系统建立了数学基础。如今,可靠性和安全性分析已成为每个技术系统设计或调查过程的重要组成部分。要解决的问题可分为两大类:1. 危险工厂的可靠性和安全性分析,比较其可靠性和安全性参数的值,提高工厂的安全水平等; 2. 预测即将建造的新工厂的可靠性和安全性参数值。因此,有必要获得有关设备功能、事故及其后果、维护操作及其成本的完整而准确的数据,这些数据可用于解决上述分类中第一类问题。最好的情况是,这些信息是从同一台设备(特定故障数据)或类似条件下的类似设备收集的。对于第二组问题,我们必须使用计划实施的设备信息,结合专家对新设备可靠性参数的判断,或者使用标准值或标准可靠性模型(例如MIL-217 或 Bellcore)。因此,需要从安装和操作的现场记录中收集与所有类型组件相关的可靠性数据,以便我们分析、比较或预测复杂系统的可靠性水平。我们可以定义至少三类可靠性数据库用户 [1]: - 风险和可靠性分析师,用于分析和预测复杂系统的可靠性; - 维护工程师,用于测量和优化维护性能; - 组件设计人员,用于分析和优化组件性能。所有这些专家都需要不同类型的数据。风险分析师需要计算系统可用性或任务成功或失败的概率。为此,他需要了解组件的可用性和故障率。如果停机时间已正确包含在数据库中,则可以根据按需故障估计可用性。维护工程师需要测量维护性能。操作数据将维护的影响和组件的固有可靠性混为一谈。他还想知道,如果不进行维护,组件的故障行为会是怎样的。组件设计人员主要对揭示设计弱点的故障机制感兴趣。因此,他有兴趣根据故障机制区分故障模式。如果无法做到这一点,则使用工程知识从其他信息中推断故障机制。
904-0002:数据记录系统 - 多通道数据记录系统记录并同步来自多个 LGR 分析仪和其他设备(GPS、风速计)的串行 (RS-232) 输出
在电池单元生产开始时,为了生产阳极和阴极的电极糊,必须首先明确识别原材料。所需的活性材料、导电炭黑、溶剂或粘合剂以及添加剂通常都标有条形码。在 Balluff,您可以找到用于读取这些代码的各种产品,以及其他识别解决方案。其中包括手持式阅读器和 RFID 系统,它们无需接触即可识别相关原材料。这让您可以确保糊剂(浆料)按照配方生产,并且不会出现任何质量缺陷。