2.5 CorVue 算法与 Merlin.net 患者护理网络 (PCN) 平台配合使用,旨在远程监控兼容 CIED 患者的心力衰竭早期迹象。CorVue 算法从 CIED 收集胸内阻抗数据,并通过移动应用程序 (myMerlinPulse) 将其传输到 Merlin.net PCN 平台。它使用蓝牙和互联网或移动网络连接来生成警报。或者,公司可以提供通过 Wi-Fi、手机或固定电话连接的远程监控单元 (Merlin@Home),而不是使用基于应用程序的智能手机发射器。医疗保健专业人员可以在 Merlin.net PCN 平台上查看设备传输的数据。Merlin.net 和移动发射器的访问权限是 CIED 的一部分,CorVue 算法随 CIED 设备免费提供。
在人类活动造成的地球生物多样性丧失以空前的速度加速时,对生物多样性的检测和监测至关重要。我们面临着人类历史上最大的生物多样性丧失,这一损失被称为“第六次大规模灭绝”(Leakey 1996; Kolbert 2014),鉴于其杂志与从化石记录中可检测到的地球历史上的过去灭绝事件成比例。国际保护生物多样性的努力(2011年联合国),并通过政府间的生物多样性和生态系统服务来记录全球生物多样性的状态和趋势的评估过程(Díaz等人2015)提高了人们对在全球范围内持续监测生物多样性的关键需求的认识。生物多样性本身 - 生态系统和生物生物组织中任何生物组织中发现的生活的变化 - 几乎可以在任何地方观察到。但是,如果可以远程感知栖息地,功能性状,性状多样性和植物功能的空间周转,则可能存在与陆地生物多样性相关的栖息地和栖息地的多样性的潜力。要面对这一挑战,最近有要求
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
太阳能诱导的叶绿素荧光(SIF)已成为植被生产力和植物健康的有效指标。SIF的全球量化及其社会不确定性产生了许多重要的功能,包括改善碳通量估计,改善碳源和水槽的识别,监测各种生态系统以及评估碳序列工作。长期,区域到全球尺度监测现在是可行的,可以从多种地球观察卫星中获得SIF估计。这些努力可以通过严格的卫星SIF数据产品中存在的不确定性来源的严格核算来帮助这些努力。在本文中,我们引入了一个贝叶斯分层模型(BHM),以估算从1°×1◦分辨率分辨率分辨出具有全球覆盖的旋转碳天文台-2(OCO-2)卫星观测中的SIF和关联不确定性。我们的建模框架的层次结构允许方便模型规范,各种变异源的量化以及通过回归模型中的傅立叶项纳入季节性SIF信息。模型框架利用大多数温带土地区域的SIF可预测的季节性。所得数据产品以相同时空分辨率的现有大气二氧化碳估计值进行了补充。
河流生态系统中的生物多样性丧失速度要比限制系统更快,更严重,并且需要空间保护和恢复计划来停止这种侵蚀。关于生物多样性和物种分布的状态和变化的可靠且高度解决的数据对于有效措施至关重要。的高分辨率图仍然有限。与全球卫星传感器的耦合数据具有广泛的环境DNA(EDNA)和机器学习可以实现河流生物分布的快速而精确的映射。在这里,我们研究了使用沿瑞士和法国Rhone River的110个地点的埃德纳数据集组合这些方法的潜力。使用Sentinel 2和Landsat 8图像,我们产生了一组生态变量,描述了河走廊周围的水生栖息地和陆地栖息地。我们将这些变量与基于EDNA的存在和29种鱼类的不存在数据相结合,并使用了三种机器学习模型来评估这些物种的环境适用性。大多数模型表现出良好的性能,表明从遥感中得出的生态变量可以近似鱼类分布的生态决定因素,但是水衍生的变量比河流周围的陆地变量具有更强的关联。物种范围的映射表明该物种沿着瑞士的物种占用物的显着转移,从其瑞士阿尔卑斯山的来源到法国南部的地中海出口。我们的研究消除了将遥感和EDNA结合到大河中物种分布的可行性。该方法可以扩展到任何大河以支持保护方案。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
©作者2025。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。
有机物的含量[ - ]动物的总数[ - ]每日自治[ - ]全年植物的总操作时间[ - ]空气密度[kg/m 3]风速[m/s]每日电能需求[kWh/day]在Anemometer [m/s]下风速[m/s]!水的密度[1000 kg/m 3]“#枢轴高度处的风速[m/s] $肥料中的干物质含量[ - ]电池效率[%]缩写%和转换器的效率[%] AC替代当前%'的效率'
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月13日发布。 https://doi.org/10.1101/2025.02.13.638097 doi:Biorxiv Preprint
wigner否定性作为非经典性的众所周知的指标,在使用连续变量系统的量子计算和仿真中起着至关重要的作用。在辅助模式下,通过适当的非高斯操作对Wigner阴性状态进行条件制备是量子光学实验中的常见程序。是由现实世界量子网络的需求激励的,在这里,我们从定量的角度研究了在多部分方案中Wigner负性的远程创建和分布。通过建立类似于普遍的科夫曼 - 昆杜(Coffman-kundu-Wootter)不平等的一夫一妻制关系,我们表明无法在不同模式之间自由分配wigner否定性的量。此外,对于光子减法,我们提供了一种直观的方法来量化远程生成的wigner否定性。我们的结果为利用Wigner负性作为基于非高斯场景的众多量子信息协议的宝贵资源铺平了道路。