Hang Thi Thuy Gander-Bui, 1 , 2 Jo € elle Schl € afli, 1 Johanna Baumgartner, 1 , 2 Sabrina Walthert, 1 Vera Genitsch, 3 Geert van Geest, 4 Jose´ A. Galva´ n, 3 Carmen Cardozo, 3 Cristina Graham Martinez, 3 Mona Grans, 5 Sabine Muth, 5 Re´ my Bruggmann,4 Hans Christian Probst,5 Cem Gabay,6和Stefan Freigang 1,7, * 1, * 1伯恩伯恩伯恩伯恩大学组织医学与病理学研究所实验病理学,瑞士大学2研究生院2伯尔尼大学伯尔尼,伯尔尼,瑞士3012伯尔尼,3012瑞士4 Interfulty BioInformatics和瑞士生物信息学研究所,伯恩大学,3012,瑞士伯恩,瑞士5. 55131 MAINZ大学医学中心,德国55131 Mainz 6 6 6瑞士大学医院,瑞士大学医院,瑞士大学医院7号风湿病学司。 stefan.freigang@unibe.ch https://doi.org/10.1016/j.immuni.2023.06.023
包括造林,造林和恢复,土壤碳,去除生物炭,增强的岩石风化,bioccs,直接空气捕获,海洋碱度增强以及其他去除技术或开发中的混合方法。9从开始时,应为更高的耐久性卸下措施,持续效果,并在数千年的时间内测量耐用性。保持净零余额将需要与耐久存储的持久排放的持久排放相似。
废物能源化 (EfW) 是一种废物管理方法,将社会卫生服务与能源和热能回收相结合。EfW 工艺安全地燃烧残余废物并产生电能和热能。EfW 设施可以结合点源碳捕集技术,从废物燃烧产生的烟气中去除二氧化碳 (CO₂),从而将二氧化碳浓缩并输送至下游进行长期封存,例如通过封存在地质构造中。目前,作为 EfW 工艺输入的废物中化石碳和生物碳的比例约为 50/50。生物碳来自废物流中的生物质,是生物圈自然碳循环的一部分。如果没有 EfW 工艺,这些生物质会发生生物降解,将生物碳释放到大气中。在 EfW 设施中使用碳捕集与封存 (CCS) 技术,可以将生物碳从生物圈碳循环中永久移除,从而产生大气负排放,并由此产生二氧化碳移除 (CDR) 信用额。 EfW 不仅可作为 CDR 途径发挥作用,还具有许多共同优势,包括:
悉尼火车已聘请承包商去除已确定为高风险的树木。拆除树木将于3月17日星期一和3月18日(星期二)进行。赛道和高架电源线附近的树木可能威胁到公共安全,并造成训练服务的重大干扰。悉尼火车已聘请树木依们检查我们网络附近的所有树木,并建议哪些树木有掉落的高风险,应取消。高风险树通常会患病,状况不佳或结构上不恢复。随后在独立树木学家的监督下,合格的承包商将这些树木拆除。安全是我们的最高优先事项。悉尼火车具有与行业最佳实践相一致的生物多样性程序,在该行业中,将货币价值分配给被去除的任何树木。然后将这些资金分配给网络同一地区或其他领域的生物多样性保护工作。悉尼火车的砍伐树木的清除符合所有适用的法规和立法。该程序围绕最新的树木文化,环境和安全标准进行设计。要了解更多信息,请致电131 500。我们了解这项工作可能会对您产生影响,我们感谢您的耐心和理解。
摘要。这项工作旨在合成和表征橙皮(OP)易于回收的磁复合材料(Orange Peel复合[OPC]),并将其用作e efff fromedscorembent,以从批处理模式下从水性溶液中清除工业药物(diclofenac(dfc))。OP和OPC通过各种技术进行表征,包括傅立叶变换红外,扫描电流显微镜与能量分散光谱,X射线di ff raction,Brunauer-Emmett – Emmett – Emmett – Emmett – Emmett – Emmett-thermogravimetric分析表明,OPC具有有趣的物理学物质性质,可与许多其他许多其他相比。发现OPC的DFC去除是时间依赖性的,并且在90分钟后获得平衡状态。此外,在30°C的温度下,该磁性材料的DFC吸附能力估计为37.0 mg·g -1,高于各种吸附剂。此外,热力学研究结果表明,DFC的去除是可行的,放射的和自发的过程。所有这些结果证明,在广泛的实验条件下,可以将磁化的OP废物视为从水溶液中除去DFC的有前途的材料。
在饮用水生产过程中使用快速砂过滤(RSF),用于去除颗粒,可能有害的微生物,有机物质和无机化合物,例如铁,锰,铵和甲烷。但是,RSF也可用于去除某些有机微污染物(OPM)。在这项研究中,可以通过生物增强来刺激填充全尺度RSF的沙子的柱子中的拆卸(即用另一个RSF的沙子接种RSF和/或生物刺激(即添加刺激微生物生长的营养素,维生素和微量元素)。结果表明,柱中的PFOA,卡马西平,1-H苯并二唑,苯并二氮酸酯和二氨二醇的去除量很低(<20%)。普萘洛尔和双氯芬酸的去除率更高(50 - 60%),可能通过吸附过程发生普萘洛尔去除,而对于双氯芬酸,尚不清楚去除是否是物理化学和生物学培训的组合。此外,生物学和生物刺激导致38天后加巴喷蛋白和美托洛尔的99%去除,孵育52天后去除99%。没有生物刺激的生物仪柱显示52天后加巴喷丁和美托洛尔的去除率为99%,在80天后进行了Acesulfame。相比之下,非生物仪的柱未去除加巴喷丁,去除<40%的美托洛尔,仅在孵育80天后才显示出99%的丙硫酸含量。去除这些OMP与铵氧化和氨氧化细菌的绝对丰度负相关。16S rRNA基因测序表明,丙硫酸含量,加巴喷丁和美托洛尔的抗粉化与特定细菌属的相对丰度呈正相关,这些属的物种含有异养和有氧或有氧或硝化的代谢。这些结果表明,RSF的生物提升可以成功地去除,在这种情况下,生物刺激可以加速这种去除。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
目的:评估使用冠状CT血管造影(CCTA)中具有光子计数检测器(PCD)CT的冠状非钙(VNCA)图像在冠状冠状动脉(VNCA)图像中的可行性和准确性。材料和方法:这项回顾性的机构审查委员会批准的研究包括连续的患有CCTA的钙化冠状动脉斑块,患有PCD-CT和侵袭性冠状动脉造影。虚拟单词图像(VMI)和VNCA图像被重建。两位读者在VMI和VNCA图像上量化了直径狭窄。3D-QCA作为参考标准。测量值。结果:三十例患者[平均年龄,64岁±8(标准偏差);包括26名男性]包括来自钙化斑块中的81个冠状动脉st虫。由于VNCA图像上错误的斑块减法,必须排除81个stenose(12%)的十个(12%)。在3D-QCA上确定的中位直径狭窄为22%(四分位间范围为11% - 35%;总范围为4% - 88%)。与3D-QCA相比,VMI高估了直径的狭窄(平均差异-10%,p <.001,ICC:.87和 - 7%和 - 7%,p <.001,ICC:.84分别为读取器1和2),而VNCA图像显示了类似的VNCA图像,而VNCA的平均狭窄stetnose(平均stensenose and per and per and p = .68,p = .68,p = .68,p = .68,per = .68, .07,ICC:.93分别为读取器1和2)。结论:主要至中度狭窄的第一个经验表明,在可行的PCD-CT中,CCTA中的虚拟钙去除,有可能改善钙质狭窄的量化。
Div> A Institute of Health and Analytics, Petronas Technology University, Silver, Malaysia B Institute of Autonomous Systems, Petronas Universiti Technology, Silver, Malaysia C Department of Electrical and Electronic Engineering, Universiti Technology Petronas, Silver, Malaysia D Department of Neuroscience Electronique, Informatique et image (LE2I), ERL Vibot CNRS 6000, Universite de Bourgogne, France
2 t。现在,我们执行一系列k的清洁步骤,并定义K对应的超图G0⊇g 1···g k,其中gℓ是在清洁步骤(1≤ℓ≤K)之后获得的HyperGraph。在步骤ℓ我们相对于间隔i的清洁,如下所示:对于S -1顶点V 1 。 。 ,。 。 。 v s - 1,j)表示最左边的β| J |顶点w∈J使得{v 1,。 。 。 ,v s -1,w}∈E(gℓ -1),如果至少有β| J |这样的顶点,否则让Lℓ(v 1,v 2,。 。 。 v s - 1,j)是所有此类顶点w的集合。 删除所有边缘{v 1,。 。 。 ,v s - 1,w}∈E(gℓ -1),w∈Lℓ(v 1,v 2,。 。 。 v s - 1,j)。 由此产生的超图是gℓ。 按定义,对于每个给定的(s-1)-tuple v 1,v 2,。 。 。 ,v s - 1,对于每个间隔j∈Jℓ,此操作最多删除β| J |表格的边缘{v 1,。 。 。 ,v s -1,w∈J。 由于jℓ中的间隔,j形成一个iℓ的分区(每1≤j≤t),我们最多删除β|我ℓ|考虑这些间隔时边缘。 总结超过1≤j≤t,这总数最多为Tβ|我ℓ| v 1的少于n s -1选择中的每一个中的边缘删除。 。 。 ,V s -1。 总和ℓ= 1,。 。 。。。,。。。v s - 1,j)表示最左边的β| J |顶点w∈J使得{v 1,。。。,v s -1,w}∈E(gℓ -1),如果至少有β| J |这样的顶点,否则让Lℓ(v 1,v 2,。。。v s - 1,j)是所有此类顶点w的集合。删除所有边缘{v 1,。。。,v s - 1,w}∈E(gℓ -1),w∈Lℓ(v 1,v 2,。。。v s - 1,j)。由此产生的超图是gℓ。按定义,对于每个给定的(s-1)-tuple v 1,v 2,。。。,v s - 1,对于每个间隔j∈Jℓ,此操作最多删除β| J |表格的边缘{v 1,。。。,v s -1,w∈J。由于jℓ中的间隔,j形成一个iℓ的分区(每1≤j≤t),我们最多删除β|我ℓ|考虑这些间隔时边缘。总结超过1≤j≤t,这总数最多为Tβ|我ℓ| v 1的少于n s -1选择中的每一个中的边缘删除。。。,V s -1。总和ℓ= 1,。。。因此,e(gℓ−1) - e(gℓ) ,K,我们得到了,K,我们得到了
