诺斯罗普·格鲁曼公司任务扩展飞行器 (MEV) RPO 成像仪在 GEO 上的性能 Matt Pyrak 诺斯罗普·格鲁曼空间系统 约瑟夫·安德森 空间物流有限责任公司 摘要 本文将描述和说明由诺斯罗普·格鲁曼公司制造的空间物流有限责任公司任务扩展飞行器 (MEV) 使用的会合和近距操作 (RPO) 传感器的实际性能。MEV-1 于 2019 年发射,并于 2020 年 2 月与位于 GEO 墓地轨道上距离 GEO 约 300 公里的 Intelsat 901 卫星执行会合、近距操作和对接 (RPOD)。MEV-2 于 2020 年发射,并于 2021 年 2 月和 3 月与直接在地球静止轨道上的 Intelsat 10-02 卫星执行了类似的 RPOD 序列。这些飞行器使用三种不同的传感现象来提供所有必要的相对导航数据,以实现上述 RPOD 功能。这些包括可见光谱成像仪(窄视场和宽视场)、长波红外 (LWIR) 成像仪(窄视场和宽视场)和主动扫描激光雷达。本文将探讨这些传感器在 GEO 实际任务中的性能及其对未来空间态势感知能力的潜在影响。1. 简介 Space Logistics LLC 任务延长飞行器 (MEV) 是其主承包商 Northrop Grumman Space Systems (NG) 和 NG 的几家传统公司十多年开发工作的成果。MEV 被认为是新卫星服务市场中的第一代能力,它为未设计为需要维修的航天器提供宝贵的寿命延长服务。MEV 基于 Northrop Grumman 的传统 GEOStar 航天器平台构建,并采用了两项关键技术发展。第一个是准通用对接系统,它与目前在轨的大多数最初未设计为对接的 GEO 航天器兼容。第二,是整合了强大而灵活的 RPO 传感器套件,该套件由尖端硬件和软件组成,这些硬件和软件基于诺斯罗普·格鲁曼的传统 RPO 系统,包括 Cygnus 空间站补给飞行器。MEV 可延长未为在轨加油而建造的卫星的寿命。为了执行任务,MEV 与客户飞行器进行半自动会合,并使用大约 80% 的 GEO 卫星上存在的两个功能与其对接,这两个功能是面向天顶的液体远地点发动机 (LAE) 喷嘴和周围的发射适配器环。对接后,客户飞行器的推进系统和姿态控制完全禁用,从而使 MEV 能够全权负责客户飞行器的指向和轨道管理。虽然 MEV 对接系统无疑是艺术巧思的杰作,但本文将仅探讨 MEV RPO 传感器套件的性能,一组抗辐射尖端传感器,为 MEV 相对导航算法提供原始数据。这些包括可见光谱摄像机组、长波红外 (LWIR) 摄像机组和扫描激光雷达。RPO 传感器套件允许 MEV 从 50+km 处跟踪客户车辆,并在精确对接事件期间保持厘米级的相对位置。根据客户要求,MEV 和下一代车辆可以使用其传感能力从近距离对客户车辆进行多光谱检查,并通过激光雷达收集高密度 3D 检查扫描。但对这种能力最直观的展示来自 MEV-1 对接后发布的首批从 GEO 上方拍摄的在 GEO 带中处于活跃运行状态的航天器商业图像。
在过去的几十年中,通过许多技术里程碑的进步,在轨服务 (OOS) 领域已经发展成为一个可行的行业。从 1965 年双子座 6 号首次轨道交会到 2020 年诺斯罗普·格鲁曼公司的任务扩展飞行器成功重新定位国际通信卫星组织 901,科学和工程成就使一项有前途的太空新能力成为可能。这种 OOS 能力可以实现更高的灵活性、降低风险和新的扩展系统架构。最近,航天工业正在迅速部署大量卫星,这些卫星的数量级是前所未有的。本文将回顾使能技术、即将推出的 OOS 计划、新兴的扩散星座和轨道环境条件,这些条件使潜在的未来 LEO 客户能够使用 OOS。这些环境条件包括 LEO 轨道敏感性、轨道机动、J2 地球扁率和推进考虑因素。
当前的发展旨在确保加拿大技术和科学专业知识在未来的人类太空飞行和行星探索任务中起关键作用。加拿大太空机器人技术技术现在正在花费超越太空操纵器,包括流浪者,机器人工具,主动视觉传感器和科学工具,以探索火星,月亮和小行星。明年,加拿大将庆祝Canadarm 2的二十年;移动服务系统(MSS)仍每周使用,以维护国际空间站(ISS)上的要素,并与商业访问的车辆进行实验和会合。此外,在接下来的24年中,CSA已分配了额外的CAD 21.5亿美元,以实施将在Lunar Orbital Platform-Gateway上飞行的Canadarm 3(称为Lunar Gateway),并使用Rovers and Orbiters探索月球地面及其附近。这项投资将在未来五年及以后提高加拿大机器人和科学能力。
Tyvak Nano-Satellite Systems, Inc.(“Tyvak”)是 Terran Orbital Corporation(“TOC”)的全资子公司,成立于 2013 年。Tyvak 和 TOC 是美国公司,全资归美国所有。TOC 管理着一系列业务,提供端到端小型卫星解决方案和服务。Tyvak 是一家端到端卫星解决方案提供商,负责设计、集成和测试太空飞行器,并为客户提供部署和在轨服务。Tyvak 深受民用、国防和商业组织的信赖,在任务成功方面拥有良好的记录。作为卫星小型化的领导者,Tyvak 设计和建造定制架构的纳米卫星、微型卫星和微型卫星级航天器,为众多国防、情报和科学项目提供发射解决方案和航空航天技术。过去的任务包括自主会合、近距操作和对接、雷达系统、科学仪器、空间态势感知、技术演示、遥感成像仪、地球观测望远镜等。
模块和登月舱的分离是飞行中最关键的阶段之一。在此期间,机组人员将模拟登月下降的检查操作。登月舱中的麦克迪维特和施韦卡特将与指挥/服务舱中的斯科特分离,进行小规模会合和远程操作。分离、对接在第一次机动中,称为“迷你足球”,两艘航天器之间的最大距离约为三英里半。登月舱下降引擎将进行两次试射,然后抛弃,两艘飞船在第二次也是最后一次对接之前,最大距离约为 109 英里。操作完成后,登月舱上升级将脱离对接,其引擎燃烧至燃料耗尽,登月舱被送入远地点估计超过 3,600 英里的轨道。任务预计于星期四上午 5:46 左右溅落。
对于这一特定任务,该联盟已初步确定了两个可能的研究案例:LUMIO 和 M-ARGO。LUMIO(月球流星体撞击观测器)是一颗 12U 立方体卫星,将进入地球-月球 L2 晕轨道,通过探测流星体的闪光来观察、量化和描述流星体对月球背面的撞击,补充地球上对月球正面的观测,以提供有关月球流星体环境的全球信息并有助于了解月球情况。M-ARGO 是一颗 12U 深空立方体卫星,将与近地小行星会合并描述其物理特性以了解其是否存在原位资源,首次展示立方体卫星系统独立探索深空的能力。这两项任务的特点是在恶劣环境中具有高度的自主性和复杂性,因此是正在进行的 ESA RAMS/FDIR 活动的极佳研究案例。在活动的第一阶段,LUMIO最终被选为项目进一步完善的研究案例。
需要强大的相对导航系统和传感器来确保成功完成航天器与小天体(小行星、彗星)的自主会合操作、航天器近端/对接机动以及行星体进入、下降和着陆 (EDL) 任务。在过去 5 年内,全局快门闪光激光雷达已成为这些相对导航任务领域的首选传感器。与其他激光雷达模式相比,全局快门闪光激光雷达具有出色的尺寸、重量和功率 (SWaP) 性能,能够生成实时组织的点云并同时跟踪多个物体。首批使用由 Advanced Scientific Concepts LLC (ASC) 设计和制造的全局快门闪光激光雷达相对导航传感器的两个作战太空计划是 NASA/洛克希德马丁 OSRIS-Rex 和 NASA/波音的 CST-100 Starliner(载人航天运输)任务。 OSIRS-REx 任务尤其令人感兴趣,因为这是首次收集闪光激光雷达深空可靠性数据。
中国正处于长期努力中,以制定具有强大军事和国家安全组成部分的世界一流太空计划。自2015年以来,中国官员和非正式著作越来越强调太空战的重要性,包括进攻和强制用途。同时,中国从2000年代初以来就从事巨大而敬业的努力,以发展各种破坏性和无损的进攻性柜台空间能力,其中一些或很快就会成为运营。本研究探讨了中国反空间能力发展的多个领域,从共轨道会合操作到直接上升的反卫星拦截器以及电子和网络战争。它总结了有关当前程序的了解,提供了有关每个功能领域独特特征以及每个领域中中国能力的高级功能的估计。尽管中国寻求大量的反空间功能并非唯一,但它可能直接和间接影响美国和欧洲的战略利益,因此对跨大西洋安全具有巨大的影响。
第 101 空降师(空中突击)参加市场花园行动 80 荷兰费赫尔——9 月 12 日至 23 日,美国陆军第 101 空降师(空中突击)的 101 名士兵将参加在荷兰各地举行的纪念活动,纪念二战市场花园行动 80 周年。“1944 年,第 101 空降师在市场花园行动中展示了其标志性的勇气和无畏精神,跳入敌后,预计战斗 72 小时,但实际上连续战斗了 72 天,”第 101 空降师(空中突击)指挥官美国陆军少将布雷特·西尔维亚说。“八十年后,‘尖叫鹰’继续传承这一传统,并已准备好迎接下一次与命运的会合。我们很荣幸能与美国陆军以及我们的盟友和伙伴一起参加市场花园行动 80 周年纪念活动。”我们的士兵将与二战老兵及其亲属、国防部代表、社区成员以及荷兰地方和国家领导人一起参加众多仪式和活动。
三角翼轰炸机早期曾具备空中加油能力,但十多年来该系统一直停用。到 1982 年,没有一架 Vulcan 飞行员使用过该系统,也很少有人记得曾经使用过它。轰炸机的空中加油系统很快恢复使用,但很明显,一架 Vulcan 往返福克兰群岛需要大量的加油机支援。至少需要十架 Victor 加油机出动来为轰炸机及其随行加油机提供加油。在返航途中,另一架加油机需要与轰炸机会合,为返程的最后一段提供燃料。另一个令人生畏的问题是 Vulcan 的导航系统不足以完成拟议的任务。轰炸机的 1950 年代地面测绘雷达足以在有大量地貌特征可以提供定位的地区进行作业。但是,火神式轰炸机的雷达和其他导航系统非常不适合在南大西洋的荒芜地区执行任务。那里的固定点很少,而且相距很远。返航的轰炸机可能缺少燃料,需要与被派去补充油箱的加油机在海上快速准确地会合,为返航的最后一段提供燃料。为了弥补这一不足,被选中执行任务的火神式轰炸机和维克托加油机进行了改装,以携带匆忙采购的“旋转木马”惯性导航系统。福克兰群岛上的阿根廷战斗机、防空导弹和防空高射炮的规模尚不清楚,但必须认识到潜在的威胁。因此,火神式轰炸机将在夜间发动攻击。随着行动的各个部分汇集在一起,一个大问题仍然存在:一架携带 21 枚 1,000 磅炸弹的火神式轰炸机造成的损害是否足以值得如此巨大的花费和努力?事实上,英国武装部队极度缺乏可用于对付福克兰群岛的武器。除非出现一些无法预见和无法克服的困难,否则“黑公鹿”行动将继续进行。被选中参加行动的机组人员开始了一段强化训练。对于许多复杂的军事行动,如果时间允许,通常会事先进行演练。在“黑公鹿”行动中,虽然有时间,但没有尝试进行演练。正如一位 Victor 飞行员后来解释的那样:“演练和执行任务一样麻烦,所以决定执行任务。如果问题变得太大,我们会中断任务,并将其称为演练……”