项目调试延误是在土地获取挑战,网格连通性问题和监管障碍的驱动下,仍然是印度可再生能源部门的重大关注点。此外,旨在通过超大太阳能和风能和集成存储的企业和可调节性RE(FDRE)项目(FDRE)项目可以引入其他风险。这些包括未能满足需求目标,市场价格波动的暴露以及围绕未来电池成本的不确定性的处罚。合并,项目延迟和FDRE项目的风险有可能提高资本成本高达4%或400个基点(BPS〜相当于1/100的1%,或0.01%)。
负担得起的可再生能源是世界各地经济体经济体本身以及通过行业耦合间接脱碳的基石(Brown等,2018,Hansen等,2019)。尽管可再生能源与化石燃料的电力来源达到了成本均衡(Kost等人,2021年),但他们继续需要针对化石燃料市场价格的贬低,以维持低融资成本并增加部署量以满足气候目标。这种投资的贬低通常是通过监管机构拍卖的长期合同来完成的(DelRío和Kiefer,2021年)。此类拍卖被认为是为公共长期合同分配可再生能源的有效工具,因为它们将成本效率和市场整合归为基础。此外,它们应该减少调节器和竞标者之间的信息不对称性(Bruttel等,2016)。在这些拍卖中,将电力消费者的成本降至最低是政府的重要目标,因为消费者的电力成本会影响经济各个部门的过渡成本。尤其如此,因为能源成本是回归性的(Haan和Simmler,2018年),欧洲可再生能源支持的年度成本超过400亿欧元(Busch等,2023),而2022年能源危机表明,高能源价格的政治争议(Fabra,2023)。
建议引用:Duffield,John S.(2020):西班牙可再生能力的政治,欧洲政府与经济学杂志(EJGE),ISSN 2254-7088,Coruña大学,Coruña,Coruña,Coruña,vol。9,ISS。 1,pp。 5-25,https://doi.org/10.17979/ejge.2020.9.9.1.52319,ISS。1,pp。5-25,https://doi.org/10.17979/ejge.2020.9.9.1.52315-25,https://doi.org/10.17979/ejge.2020.9.9.1.5231
引用(APA)Hoekstra,N.,Pellegrini,M.,Bloemendal,M.,Spaak,G。,Andreu Gallego,A.,Rodriguez Comins,J.,Grotenhuis,T.通过含水层热能存储中的创新来增加可再生能源技术的市场机会。总环境科学,第709条,第136142条。https://doi.org/10.1016/j.scitotenv.2019.136142引用此出版物的重要说明,请使用最终公开版本(如果适用)。请检查上面的文档版本。
太阳能为哥伦比亚特区能源与环境部(DOEE)计划的计划,试图向100,000个低收入家庭提供太阳能的好处,并在2032年将其能源账单减少50%。如果您有兴趣为所有人找到有关太阳能的更多信息并验证参与承包商,请访问doee.dc.gov/solarforall,请发送电子邮件至solarforall@dc.gov或致电(202)299-5271。
全球能源系统正在不断发展,以实现《巴黎协定》设定的气候缓解目标。这一过程需要各国迅速减少对化石燃料的依赖,并大量使用可再生能源发电(如风能、太阳能和水力发电)。在电力部门脱碳的同时,热力和运输部门也在电气化,以降低碳强度。可再生能源依赖天气,导致生产在几分钟到几十年的时间尺度上变化。这种变化的结果是,可能会出现可再生能源产量较低的时期,这里称为“可再生能源干旱”。需要解决这一能源安全挑战,以提供稳定的电力供应并确保电网稳定。本文选择印度作为研究区域,因为该地区已经拥有大量可再生能源发电(截至 2022 年 10 月,已安装 42 吉瓦风能、61 吉瓦太阳能和 51 吉瓦水力发电),并且该地区在大规模模式下具有良好的亚季节可预测性。
另一个问题是这些可再生饲料来源可能包含各种污染物。对几种不同生物饲料来源的分析表明存在钠、钙和磷等污染物。由于这些可再生饲料来自生物来源,因此它们还含有高浓度的氧气。氧气含量范围为 10% 至 15%,完全取决于脂肪酸链的长度和饱和度。这种氧气量很重要,因为在正常的加氢处理条件下,氧气会与氢气反应生成水。如果产生的水量足够大,可能会导致催化剂载体减弱或活性金属重新分布以及表面积损失等问题。在预期的 10% 混合比下,氧气含量约为 1 至 1.5 wt%,即使所有氧气都转化,也不太可能产生足够的水而造成严重问题。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
夏威夷电气在2024年实现了36%的合并可再生投资组合标准(RPS),这在很大程度上是由于新的网格尺度和屋顶太阳能容量,这加速了2030 RPS里程碑的进度,为40%。夏威夷电气的合并RPS显示了可再生资源生成的瓦胡岛,夏威夷岛和毛伊县的电力百分比。这代表了地热,生物质,水力,风,生物燃料和太阳能的混合,包括114,000个屋顶太阳能系统。在2025年,夏威夷电气预计将进一步增加瓦阿和夏威夷岛上的可再生能源和电池能量存储,并在所有岛屿上增加数千个屋顶太阳能系统。