摘要 在大肠杆菌和 11 种相关肠道细菌中研究了重组 DNA 修复和可诱导诱变 DNA 修复的发生率。发现重组修复是至少 6 种肠道细菌的 DNA 修复库的共同特征。这一结论基于对 (i) 损伤诱导的 RecA 样蛋白合成、(it) 大肠杆菌 recA 序列与某些染色体 DNA 之间的核苷酸杂交以及 (iii) recA 负互补的观察,该质粒显示截短大肠杆菌 recA 基因的 SOS 诱导表达。因此,DNA 损伤诱导基因表达的机制得到充分保留,以允许非大肠杆菌调控元件控制这些克隆的截短大肠杆菌 recA 基因的表达。相比之下,大肠杆菌中利用 umuC+ umuD+ 基因产物的诱变修复过程似乎不那么普遍。在大肠杆菌属之外,几乎没有检测到紫外线诱导的利福平抗性诱变,甚至在大肠杆菌属内,也仅在 6 个物种中的 3 个中检测到诱变。核苷酸杂交表明,在这些不易变异的生物体中没有发现像大肠杆菌 umuCD+ 基因这样的序列。本文讨论了可诱导诱变修复的偶发性引发的进化问题。
在有丝分裂期间,染色体发生广泛的结构变化,导致形成紧凑的cy骨体并终止大部分DNA依赖性代谢活性。因此,不会预期会干扰诸如DNA复制和转录等过程的DNA率对有丝分裂的基因组稳定性构成重大威胁。但是,有一些例外。DNA复制和修复中间介导,从物理上互连姐妹染色单体会危及忠实的染色体染色体,并且需要在后期开始之前解决。此外,二含染色体可以形成染色质桥,并诱导融合融合 - 破裂周期,对基因组稳定性产生可怕的后果。最后,在有丝分裂的早期逃脱G2/M DNA损伤检查点或出现的染色体断裂可能会导致落后的Acentric DNA片段在细胞退出有丝分裂时会误差并形成微核。染色质桥和微核都是突变级联反应的潜在来源,可导致巨大的杂质不稳定性,并显着促进基因组复杂性。在这里,我们回顾了我们对染色体桥和微核的起源和后果的最新进展以及细胞抑制它们的机制。
可以说,构成飞机结构的组件属于三个主要类别之一:可消耗,可修复和旋转。可消耗性的零件是MRO无法控制的零件。需要在需要时更换,并且从来没有任何修理问题的问题。可修复的零件和可旋转零件共享许多共同点,主要是可以在适当的安全性和成本效率方面对它们进行修复。但是,旋转型与可修复的组件不同,因为它们不仅包含关键序列号,而且要在严格的预定时间间隔内进行检查和维护。也像可修复的零件一样,涉及旋转的最大挑战之一就是知道何时可以修复零件,以及何时必须更换零件。