SCOV-2的类似木瓜蛋白酶样蛋白酶(PLPRO)是病毒复制的必不可少的蛋白质,也是开发小分子药物的有吸引力的靶标。11 - 14 PLPRO在病毒复制15 - 17中起着至关重要的作用,并防止受感染的细胞产生干扰素,这对于安装针对SCOV-2的免疫反应至关重要。12,18,19 PLPRO裂解肽序列LXGG(X表示任何氨基酸),该氨基酸存在于未成熟SCOV-2病毒多蛋白的3个位点中。PLPRO催化了未成熟病毒多蛋白的三种非结构蛋白的释放,称为NSP1,NSP2和NSP3。12 NSP1,NSP2和NSP3在病毒复制中起关键作用,并抑制PLPRO块SCOV-2在细胞中的复制。20 PLPRO还切开包含序列RLGG的宿主蛋白,该蛋白存在于几种泛素(Ub)和泛素样蛋白(UBL)中,例如干扰素诱导的基因15(ISG15)蛋白。21 PLPRO具有显着的去渗透和去泛素化活性和PLPRO抑制可诱导病毒感染细胞产生干扰素,这应该导致对病毒的免疫反应增强。因此,从SCOV-2中对PLPRO的开发抑制剂非常感兴趣。14,20
SCOV-2的类似木瓜蛋白酶样蛋白酶(PLPRO)是病毒复制的必不可少的蛋白质,也是开发小分子药物的有吸引力的靶标。11 - 14 PLPRO在病毒复制15 - 17中起着至关重要的作用,并防止受感染的细胞产生干扰素,这对于安装针对SCOV-2的免疫反应至关重要。12,18,19 PLPRO裂解肽序列LXGG(X表示任何氨基酸),该氨基酸存在于未成熟SCOV-2病毒多蛋白的3个位点中。PLPRO催化了未成熟病毒多蛋白的三种非结构蛋白的释放,称为NSP1,NSP2和NSP3。12 NSP1,NSP2和NSP3在病毒复制中起关键作用,并抑制PLPRO块SCOV-2在细胞中的复制。20 PLPRO还切开包含序列RLGG的宿主蛋白,该蛋白存在于几种泛素(Ub)和泛素样蛋白(UBL)中,例如干扰素诱导的基因15(ISG15)蛋白。21 PLPRO具有显着的去渗透和去泛素化活性和PLPRO抑制可诱导病毒感染细胞产生干扰素,这应该导致对病毒的免疫反应增强。因此,从SCOV-2中对PLPRO的开发抑制剂非常感兴趣。14,20
1 联合实验室 i4HB—健康与生物经济研究所,新里斯本大学新科学技术学院,2819-516 Caparica,葡萄牙 2 UCIBIO—应用分子生物科学部,化学系,新里斯本大学新科学技术学院,2819-516 Caparica,葡萄牙 3 环境科学研究所,HKC-202 室,博阿齐奇大学,贝贝克,伊斯坦布尔 34342,土耳其; enginbayram@reotek.com.tr(EB); berat.haznedaroglu@boun.edu.tr (BZH) 4 萨拉热窝大学理学院生物系,萨拉热窝 71000,波斯尼亚和黑塞哥维那; llbilela@pmf.unsa.ba 5 天然产品和农业生物学研究所—CSIC,38206拉古纳,西班牙; mcueto@ipna.csic.es (MC) 6 拉拉古纳大学生物有机物研究所(IUBO),38206 拉拉古纳,西班牙 7 CICA- 化学与生物学跨学科中心,拉科鲁尼亚大学科学学院化学系,15071 拉科鲁尼亚,西班牙; carlos.jimenez@udc.es 8 希腊海洋研究中心海洋生物、生物技术和水产养殖研究所,HCMR Thalassocosmos,71500 Gournes,克里特岛,希腊; mandalakis@hcmr.gr 9 LAQV,REQUIMTE,里斯本新大学新科学技术学院化学系,2819-516 Caparica,葡萄牙; florbela.pereira@fct.unl.pt 10 MEDINA 基金会,Avda. Knowledge 34, 18016 阿米拉,西班牙; fernando.reyes@medinaandalucia.es 11 GEOMAR 海洋生物技术中心(GEOMAR-Biotech),海洋天然产物化学研究单位,GEOMAR 亥姆霍兹基尔海洋研究中心,Am Kiel-Kanal 44, 24106 基尔,德国; dtasdemir@geomar.de 12 基尔大学数学与自然科学学院,Christian-Albrechts-Platz 4, 24118 基尔,德国 * 通讯地址:s.gaudencio@fct.unl.pt;电话:+351-212948300;传真:+351-212948550
1中国医学科学院牛津研究所,牛津大学,牛津大学,牛津大学,牛津大学,英国2号,纳菲尔德医学系,牛津大学牛津大学,牛津大学,牛津大学,英国3英国感染与免疫学和免疫与移植研究所,UCL,UCL,伦敦,伦敦,金dom,Kingdom,4个皇后和分子医学学院,英国皇后科学院。 London, United Kingdom, 6 Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America, 7 Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America, 8 The Pirbright Institute, Woking, United Kingdom, 9 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan, 10东京科学大学应用生物学系,日本诺达,11个研究中心,日本东京国立传染病研究所,日本东京,12个呼吸医学部和牛津卫生研究所,牛津生物医学研究中心,诺夫菲尔德医学院,牛津大学,牛津大学,牛津大学,牛津大学,美国联合王国,美国牛津大学。
1中国医学科学院牛津研究所,牛津大学,牛津大学,牛津大学,牛津大学,英国2号,纳菲尔德医学系,牛津大学牛津大学,牛津大学,牛津大学,英国3英国感染与免疫学和免疫与移植研究所,UCL,UCL,伦敦,伦敦,金dom,Kingdom,4个皇后和分子医学学院,英国皇后科学院。 London, United Kingdom, 6 Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America, 7 Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America, 8 The Pirbright Institute, Woking, United Kingdom, 9 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan, 10东京科学大学应用生物学系,日本诺达,11个研究中心,日本东京国立传染病研究所,日本东京,12个呼吸医学部和牛津卫生研究所,牛津生物医学研究中心,诺夫菲尔德医学院,牛津大学,牛津大学,牛津大学,牛津大学,美国联合王国,美国牛津大学。
探测DNA复制动力学的主要方法是DNA纤维分析,该分析利用胸苷类似物掺入新生的DNA中,然后将DNA纤维的免疫荧光显微镜检查。除了耗时且容易出现实验者偏见外,它不适用于研究线粒体或细菌中的DNA复制动力学,也不适合进行高通量分析。在这里,我们介绍了质谱 - 基于新生DNA(MS波段)的分析,作为DNA纤维分析的快速,无偏,定量的替代方案。在这种方法中,使用三重四极尖串联质谱法对胸苷类似物的结合进行定量。MS波段准确地检测到人类细胞的细胞核和线粒体以及细菌的DNA复制改变。在大肠杆菌DNA损伤诱导基因库中捕获的MS-BAND捕获的复制改变的高通量能力。因此,MS波段可以作为DNA纤维技术的替代方案,并具有对不同模型系统中复制动力学的高通量分析的潜力。
此预印本的版权持有人(该版本发布于2023年4月19日。; https://doi.org/10.1101/2023.04.18.537310 doi:Biorxiv Preprint
本综述总结了2023年初COVID-19的状况。首先,提到了COVID-19是如何出现的、如何传播的、应采取的预防措施和预防策略,并给出了当前的病例。给出了SARS-CoV-2的变体,并提到Omicron变体,尤其是其亚变体XBB 1.5是最具传染性的形式。详细介绍了SARS-CoV-2的结构和复制机制。比较了用于检测SARS-CoV-2的测试的程序、准确率、成本、样本来源、检测区域和结果时间。解释了疫苗的一般机制,包括基于蛋白质的疫苗、病毒载体疫苗、全病毒疫苗和核酸疫苗。回顾了针对SARS-CoV-2变体的COVID-19疫苗的安全性、有效性和有效性,并列出了已批准的COVID-19疫苗。已评估了用于 COVID-19 患者的各种免疫调节剂和抗病毒分子。病毒聚合酶、主要蛋白酶 (M pro ) 和木瓜蛋白酶样蛋白酶 (PL pro ) 已被讨论为治疗靶点。已详细介绍了用于 COVID-19 治疗的耐药性和恢复期血浆和单克隆抗体 (mAb)。
不是疫苗针对的,很可能会在抗疫苗的菌株上活跃。尽管有很大的作用,雷姆斯维尔,mol-nupiravir和paxlovid,它由Nir-Matrelvir和Ritonavir的共同严重组成,但仍然是唯一批准用于治疗SARS-COV-2的FDA小分子药物,并且只有Marginal Clinical Implatike。1,2因此,尽管有显着性,但仍然需要开发可以有效治疗SARS-COV-2的药物。SARS-COV-2的类似木瓜蛋白酶样蛋白酶(PLPRO)是开发小分子药物的有吸引力的靶标。PLPRO在病毒复制中起着至关重要的作用,其抑制作用可防止细胞中的病毒复制。3 - 7此外,PLPRO抑制了干扰素的产生,这对于安装针对SARS-COV-2的免疫反应至关重要。PLPRO裂解肽序列LXGG,它存在于未成熟的SARS-COV-2病毒多蛋白中的3个位点中。PLPRO催化从未成熟病毒多蛋白中释放出三种非结构性蛋白,称为NSP1,NSP2和NSP3。NSP1,NSP2和NSP3在病毒复制中起关键作用,PLPRO抑制细胞中SARS-COV-2复制。3,5,8 PLPRO还切割包含序列RLGGG的宿主蛋白,该蛋白存在于几种泛素(UB)和泛素样蛋白(UBL)中,例如干扰素诱导的基因15(ISG15)蛋白。PLPRO具有显着的de液化和去泛素化活性和PLPRO的抑制可诱导病毒感染细胞的产生,这应该导致
耐药性仍然是靶向治疗剂临床衰竭的主要驱动因素。当前的肿瘤学精密医学方法依赖于靶向已知的获得的抗性突变,例如NSCLC中的EGFR T790M或ALK/ROS突变,其旨在克服或防止耐药性的2 nd和3 Rd代分子。这些下一代有针对性的治疗方法具有越来越长,复杂的药物发育时间表和繁重的毒性(例如野生型受体靶向)或药物相互作用(DDI)。毒性限制了不同靶向治疗剂的耐受性,合规性和组合性。基于RNA的免疫疗法方法为下一代小分子靶向治疗方法提供了一种越来越有吸引力的替代方法:(1)基于RNA的方法仅需要已知的获得性抗药性序列,(2)药物开发时间表,成本和复杂性可以有意义地凝结,(3)与同一候选候选者可以针对靶向多重获得的抗性突变。rbi-1000是一种使用新型的自我复制RNA(SRRNA)的候选者,以产生针对ER+乳腺癌(ER+ BC)在响应内分泌治疗中发展的可获得耐药突变的稳健免疫力。rbi-1000包括雌激素受体配体结合结构域内的靶向突变,以及以PI3K激酶结构域中激活突变的形式旁路突变或HER2/HER3的扩增。在人的HLA-转基因小鼠中也证实了T细胞针对获得的突变的启动。启动。在这里,我们证明了该srRNA封装在脂质纳米颗粒素中的多功能CD4和CD8 T细胞中,导致肿瘤生长抑制,并改善了表达靶向获得的耐药性突变的小鼠模型。免疫细胞介导的消除表达获得的耐药性突变的克隆被预测会延长对ER+BC的内分泌控制,以类似的方式对小分子或靶向疗法的小分子或单克隆抗体的靶向疗法,但由于精确的免疫学靶标和无DDI而引起的更有利的剂量和不利的剂量和不良事件。