简介。最近的Moiré材料激增已大大扩大了具有强相关电子的实验平台的数量。虽然相关的绝缘状态和扭曲双层石墨烯中的超导性[1-4]的超导能力启动,但过渡金属二分法(TMD)材料的双层中电子相关性的强度超过了石墨烯cousins中的材料[5]。在TMD中进行的实验揭示了Mott绝缘子的特征[6-10],量子异常的霍尔效应[11]和 - 在杂词中 - 分数纤维上的莫特 - 木晶体[7,12-16]。当电子电荷定位时,只有自旋程度仍然存在,并且在最近的实验中开始研究TMDMoiréBiLayers中的杂志[17-19]。Heterobilayers在三角形晶格上意识到了一个诱导的Hubbard模型[20-23],因此,局部旋转非常沮丧。这种挫败感可能会导致旋转液相,这是一种异国情调的物质,其物质实现一直在寻求[24,25]。在这封信中,我们表明n =±3 /4的通用Mott-Wigner状态报告了WSE 2 / WS 2双层[12,13]的填充状态,可以实现手性旋转液体[26,27]和Kagome Spin液体(KSL)[28-33]。在这种特殊的填充下,电子位于有效的kagome晶格上,该晶格以其高度的几何挫败感而闻名。TMD双层的可调节性 - 更换扭曲角度,栅极调整,材料在这里,我们证明了现实的模型参数如何导致该kagome晶格的有效自旋模型,并使用广泛的最新密度矩阵构造组(DMRG)模拟研究模型[34,35]。
肠道微生物组包括数万亿微生物,并通过调节代谢,免疫反应和神经元功能来深刻影响人类健康。肠道微生物组组成中的破坏与各种炎症状况,代谢性疾病和神经退行性疾病有关。但是,确定基本机制和建立原因和效力非常困难。临床前模型为肠道微生物组在疾病中的作用提供了重要的见解,并有助于鉴定潜在的治疗干预措施。人类微生物组的行动联盟启动了Delphi调查,以评估包括动物和基于细胞模型在内的临床前模型的实用性,以阐明肠道微生物组在这些疾病中的因果作用。Delphi调查旨在解决选择适当的临床前模型以有效研究疾病因果关系并有效研究宿主 - 微生物组相互作用的复杂性。我们采用了一种结构化方法,其中包括文献综述,专家研讨会和德尔福问卷,以收集来自各种利益相关者的见解。要求专家评估这些模型在解决肠道微生物组与疾病发病机理之间因果关系方面的优势,局限性和适用性。由此产生的共识陈述和建议为在肠道微生物组相关疾病的未来研究中选择临床前模型提供了宝贵的见解。
卢森堡大学跨学科安全,可靠性和信任(SNT)的跨学科中心在信息和通信技术方面进行了国际竞争性研究。除了长期,高风险的研究外,SNT还通过其合作伙伴计划与行业和公共部门进行了需求驱动的协作项目。由此产生的概念为卢森堡及其他地区的公司带来了真正的,持久的竞争优势。
Trinity College研究所(TCIN)的首席物理学家Christian Kerskens博士是研究文章的合着者,刚刚在《物理通讯杂志》上发表。他说:“我们改编了一个想法,用于实验以证明量子重力的存在,从而使用已知的量子系统,这些系统与未知系统相互作用。如果已知的系统纠缠,则未知系统也必须是量子系统。它规避了找到我们一无所知的测量设备的困难。
1第二个方面是统计是所有官方声明的一部分。一般,一个社会主义国家不是通过法律而是通过命令来管理的。这些命令在朝鲜被称为“内阁法令”,其中大多数包括统计数据。例如,旨在集中于在中央当局购买和销售谷物以维持其在1950年代维持其食品配给系统的内阁法令,其中包括重新的作物统计数据。这只是一个足够的一个,实际上,统计数据被置于其他官方文件中,例如“人民经济发展计划”,《社会主义旗帜》和高级会议中的陈述,包括SU Preme Preme Preme人民议会。
猪肠道菌群在猪的健康和生产性表现中起着至关重要的作用,影响了营养吸收,饲料转化效率以及最终的生产盈利能力。除了是消化的主要部位外,肠子还容纳了猪最大的免疫器官,那里的微生物群落对于整体幸福感至关重要。在仔猪阶段,肠道菌群经历了动态进化,逐渐适应宿主环境。这种可塑性提供了从早期阶段进行干预和优化其组成的机会,从而增强了动物健康和发展。在此过程的关键因素中,饮食纤维起着基本作用,因为肠道菌群的发酵直接影响其组成和功能,尤其是在远端小肠,结肠和直肠。在此过程中产生的短链脂肪酸不仅为肠细胞提供连续的能量,还可以调节免疫反应,防止感染并导致人体的体内平衡,从而促进健康的生长。尽管在理解宿主 - 微生物群相互作用方面取得了进步,但仍未就肠道微生物群的最佳平衡或健康微生物群的精确定义达成明确的共识。当前的研究旨在确定调节胃肠道菌群及其生理和免疫功能的因素。未来的发现将有助于制定策略以恢复外部干扰(例如压力,抗生素使用或感染)后肠道稳态,从而提高生产率,降低与压力相关的影响并预防猪产量中的疾病。
这项研究是代表研究与创新专家委员会(EFI)进行的。发现和解释是进行研究的研究所的唯一责任。EFI对报告的措辞没有任何影响。表演学院斯坦福法学院皇冠四角,559 Nathan Abbott Way,Stanford CA 94305-8610,美国www.law.stanford.edu Derman Innovation No.12-2021 ISSN 1613-4338截止日期2021年2月出版商研究与创新专家委员会(EFI)办公室Pariser Platz 6 | D-10117柏林www.e-fi.de保留所有权利,特别是复制,分销和翻译的权利。未经EFI或Institute的书面批准,使用任何形式的电子系统(通过影印本,微胶片或任何其他过程)可以复制或存储,处理,重复或分布。联系和更多信息Samantha Zyontz Stanford博士法学院皇冠四边形,559 Nathan Abbott Way,Stanford CA 94305-8610,美国T + 001(0)65 07 23 24 65 65 M szyontz@law.stanford.stanford.stanford.stanford.edu
无处不在。在极地地区,珠穆朗玛峰山峰甚至在玛丽安娜沟槽的深处都发现了它们。近年来,微塑料颗粒的环境丰度被定义为尺寸小于5 mm的尺寸,大幅增加,包括在我们吃的食物中,饮用水和我们呼吸的空气1。此策略可以起源于为特定应用制造的原发性微塑料,例如个人护理产品,也可以降低较大的塑料废物(例如合成纺织品,轮胎和食品包装)的降解。鉴于这种塑料碎片的流行率,对对人类健康的潜在影响的研究正在出现。自然医学的文章最近击中了头条新闻,报道说,使用敏感的化学分析2在验尸后人体组织(Kidney,肝脏和脑)中检测到微塑料和纳米塑料(测量小于1μM)。聚乙烯是最前景的微塑料,尤其是在脑组织中。尽管塑性浓度与年龄,性别,种族或种族或死亡原因之间没有关联,但与抽样时间有联系。与2016年相比,死于2024年的个体在肝脏和大脑中具有更高的微塑料和纳米塑料的焦点。这表明对这些塑料颗粒的展示较长,因此最常见的是通过摄入或摄入的吸收可以增加组织中的积累。这不是在人类样品中第一次检测到的微塑料。但是,将其存在与人类健康联系起来的直接证据先前受到限制。感兴趣的是,自然医学的作者还发现,有记录痴呆诊断的人的样本
此短期课程旨在使研究人员能够分析和解释研究数据,这对于产生可靠和有影响力的发现至关重要。它还使参与者拥有管理数据,应用统计技术和目前基于证据的见解的技能。培训是研究人员,学者和专业人员的理想选择,可提供研究数据集和现代分析工具的实践经验。加入本课程,以增强您的分析能力,并使您的研究更加严格和引人注目。