摘要 — 近年来,用户通过云访问量子计算机的能力迅速提升。尽管现代量子计算机仍然是嘈杂的中型量子 (NISQ) 机器,但现在正被大量研究和初创公司积极采用。量子算法通常产生概率结果,需要重复执行才能产生所需的结果。为了使执行每次都从指定的基态开始,并且前一次执行的结果不会干扰后续执行的结果,必须在每次迭代之间执行重置机制以有效重置量子位。然而,由于量子计算机中的噪声和错误,特别是这些重置机制,嘈杂的重置操作可能会导致整个计算中的系统性错误,以及信息泄露的潜在安全和隐私漏洞。为了解决这个问题,我们彻底研究了量子计算中的状态泄漏问题,然后提出了一种解决方案,即在重置机制之前使用经典和量子一次性密码本来防止状态泄漏,其工作原理是随机地为电路的每次执行应用简单的门。此外,本研究还探讨了使用资源较少的经典一次性密码本足以防止状态泄漏的条件。最后,我们通过评估不同门、测量和采样误差水平下的泄漏程度,研究了各种错误在状态泄漏中的作用。我们的研究结果为复位机制和安全量子计算系统的设计提供了新的视角。
电子邮件地址。您应该已经收到一封入职电子邮件来设置您的密码。(如果您需要重置密码,请点击“忘记密码?”,密码重置电子邮件将发送给您。请确保检查所有文件夹(包括垃圾邮件)中是否有此电子邮件。)
MR Manual Reset OCL Output Current Limiter ODO Open Drain Output OCO Open Collector Output OVIn Over Voltage Rest Input (negative) OVP Over Voltage Protection Osc Oscillator Out Output OV Latched OverVoltage function PA Power Amplifier Pb-free Plumb free PCA Pulse Current Amplitude modulation PDR Internal pull-down resistor PFM Pulse-frequency modulation Pow Power PPO Push-Pull Output PSM脉冲滑动调制PUR内部上拉电阻PWM PWM脉冲宽度调制RDT REDT RESET RESET延迟时间整流。整流器reg。受监管的Res。电阻reset-pr。重置保护RF射频应用RIN输入电阻SBD SHOTTKY屏障二极管SBR Schottky屏障整流器二极管二极管SS软启动ST-DWN Step-DWN Step-Down Step-down store stup stup升级SW。Switching T-MOS Trench-FET MOSFET Tun Tuner U-Speed Ultra-speed UHF RF applications (>250 MHz) ULN Ultra Low-Noise VCO Voltage controlled oscillator VDet Volatge Detector VHF RF applications (100...250MHz) VFM Voltage-Frequency Modulation Vid Video output stages V-MOS Vertical Metal Oxide Semiconductor VR电压调节器WB宽带较小的微电源列“样式”“样式”(SMD代码的Upercase放置和其他信息图形)。所有样式图纸都放在第8节中。列“ ATR”列附加SMD代码侵犯,例如subscipt bar,uperscipt bar,倒向符号和其他(第9节)。列“ A.D.”其他信息,例如年份,月,周或批号指定(第11节)。列“ PIN”相关的常规案例图(第6节和PINOUT分配(从表,第7节)。示例:28DC4-常规案例图纸28(第6节)和PINOUT分配DC4(第7节)。列“ SCH”列的某些元素(ICS)的样本示意图。所有示例示意图图纸都放在第10节中。列“ MNF”缩写(以节省空间)。每个制造商的完整名称,徽标和URL在第12节中按字母顺序列出。
MNH员工的用户ID是0加5位员工编号 + n(Capital),例如,如果您的员工ID为12345,则您的用户ID为012345N新用户的临时密码,欢迎1(所有较低案例)(所有较低案例),如果您需要重置您的密码,请单击“忘记密码?”并遵循提示。重置密码的链接将发送到您的医院电子邮件。
除了板载上电复位电路外,PRDN/RST 引脚还用作 TPEX 的主复位。PRDN/RST 必须驱动为低电平至少两微秒才能发生复位。PRDN/RST 引脚还可用于将 TPEX 置于非活动状态,从而使设备消耗更少的电量。此功能在电池供电或低占空比系统中很有用。将 PRDN/RST 驱动为低电平会复位 TPEX 的内部逻辑并使设备进入空闲模式。在此模式下,双绞线驱动器引脚 (TXD+/–、TXP+/–) 驱动为低电平,AUI 引脚 (CI+/–、DI+/–) 驱动为高电平,LNKST 和 RXPOL 引脚处于非活动状态,XMT 和 RCV 为低电平。只要 PRDN/RST 有效,TPEX 就会保持空闲状态。在 PRDN/RST 上的信号上升沿之后,TPEX 会保持复位状态 10
抽象能量效率仍然是改善RRAM的关键性能标记以支持物联网边缘设备的主要因素之一。本文提出了一种简单且可行的低功率设计方案,可以用作降低RRAM电路能量的强大工具。设计方案仅基于写入和阅读操作期间的当前控制,并确保写作操作完成而不会浪费能量。提出了自适应写终止电路,以控制在形成,重置和集合操作过程中的RRAM电流。终端电路感知编程电流,并在达到首选编程电流后立即停止写入脉冲。仿真结果表明,适当的编程电流选择可以帮助提高4.1倍的形成,设置的改善9.1倍,重置能量提高1.12倍。此外,还证明了对复位电阻的严格控制的可能性。阅读能量优化也可以通过利用差分含义的放大器提供可编程当前参考。最后,根据最终的应用程序要求,建立了设置/重置操作期间能源消耗与可接受的读取保证金之间的最佳权衡。
1) 在 V CC 电源上电、断电和电压不足的情况下提供 µP 复位输出。2) 内部控制 V CC 至电池备份切换,以便在主电源断电时保持数据或使存储器、实时时钟 (RTC) 和其他数字逻辑保持低功耗运行。3) 在电压不足的情况下,通过内部芯片使能门控提供存储器写保护。4) 提供特性部分列出的其他监控功能组合。MAX16016/MAX16020/MAX16021 工作在 1.53V 至 5.5V 电源电压范围内,提供固定复位阈值,用于监控 5V、3.3V、3V、2.5V 和 1.8V 系统。每个器件都提供推挽或开漏复位输出。 MAX16016/MAX16020/MAX16021采用小型TDFN/TQFN封装,规定工作温度范围为-40°C至+85°C。
(1) V Bridge = 4.3V,I S/R = 3.2A,V OUT = V SET – V RESET (2) 如果 V Bridge = 8.0V,I S/R = 2.0A,则较低的 S/R 电流会导致较大的输出变化。(3) 电源有效电流小于 1mA。(4) 未在生产中测试,由特性保证。(*) 除非另有说明,否则在 25°C 下测试。单位:1 高斯 (g) = 1 奥斯特(在空气中),= 79.58 A/m,1G = 10E-4 特斯拉,1G = 10E5 伽马。
6.1 Absolute Maximum Ratings...................................... 10 6.2 ESD Ratings............................................................. 10 6.3 Recommended Operating Conditions....................... 11 6.4 Thermal Information.................................................. 11 6.5 Electrical Characteristics........................................... 11 6.6 Power-Up Timing...................................................... 13 6.7 Reset时机..................................................................................................................................................................................................................................... Transmit Timing ................................ 15 6.13 100Mbps MII Receive Timing (2) ............................ 15 6.14 10Mbps MII Transmit Timing .................................. 16 6.15 10Mbps MII Receive Timing.................................... 16 6.16 DP83867IR/CR Start of Frame Detection Timing... 16 6.17 Timing Diagrams ............................................................................................ 17
跳闸锁定 变频器在发生故障时进入此状态以保护自身。变频器需要物理干预,例如当输出短路时。只能通过断开电源、消除故障原因并重新连接变频器来取消跳闸锁定。除非通过激活复位或有时通过编程自动复位来取消跳闸状态,否则将阻止重启。请勿出于人身安全考虑使用跳闸锁定状态。