摘要表面刻度聚合物(SIPS)是模仿抗体的分子识别能力但具有增强稳定性的仿生受体。传统的接触印记,用于sip fabripation是劳动力密集的,由于手动聚合物合成,可能会产生不一致的结果。为未来的SIP奠定基础,并用三维(3D)打印机印刷,我们的研究先驱者使用FormLabs清除3D打印树脂来创建针对细菌检测的SIP,从而消除了手册的综合步骤。我们使用大肠杆菌作为基准模板细菌生产SIP,分析其结构,并通过荧光显微镜评估其重新固定能力。为了测试交叉选择性,产生了五个其他细菌菌株的SIP,随后暴露于每种细菌菌株,突显了SIPS的特定属性针对其原始细菌模具。鉴于其3D打印适用性和材料的商业可用性,我们设想在复杂的表面上使用bacte-ria结合烙印,从而加强了生物技术,工业和环境单调的生物传感。
基于树脂增值税光聚合的3D打印系统,例如立体光刻(SLA)和数字光投影(DLP)技术变得更加易于使用。这些3D打印技术在不同行业中具有数量应用。本研究旨在通过将基于碳的材料(即石墨烯和碳纳米管)添加到液体聚合物中来增强3D打印物体的机械性能。在此工作中进行了根据DLP方法进行调整的液晶显示器(LCD)3D打印技术。它使用LCD屏幕和紫外线LED背光来固化逐层中的液体树脂。将碳纳米管和石墨烯组合成液体树脂,以增强机械性能。与初始树脂相比,该碳材料量变为0.05、0.1和0.2%w/w。使用ASTM D638型标准模型对3D打印样品进行了拉伸测试。20秒暴露时间的0.1%W/W石墨烯混合树脂试样显示,弹性模量从7.31±1.02 MPa增加到9.38±0.37 MPa,最大加速度强度为9.38±0.37 MPa和3.87±1.13 MPa至5.28±0.73 MPa。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
彩色皮秒声学 (CPA) 和光谱椭圆偏振术 (SE) 相结合,测量沉积在 300 毫米晶圆上的聚合物薄膜树脂的弹性和热弹特性。使用 SE 测量膜厚度和折射率。使用 CPA 根据折射率测量声速和厚度。比较两种厚度可以检查两种方法之间的一致性。然后在 19 ◦ 至 180 ◦C 的不同温度下应用相同的组合。随着样品被加热,厚度和声速都会发生变化。通过分别监测这些贡献,可以推导出声速温度系数 (TCV) 和热膨胀系数。该协议适用于目前微电子工业使用的不同薄膜树脂制成的五种工业样品。杨氏模量在不同树脂之间相差高达 20%。每种树脂的 TCV 都很大,并且从一个树脂到另一个树脂的相差高达 57%。
免责声明:据我们所知,本文件中的信息是正确和准确的。它是善意给出的,但不提供任何保证。用户必须自行确定我们的产品是否适合其特定用途。在任何情况下,Rust-Oleum Europe 均不对间接或附带损害负责。产品必须在符合 Rust-Oleum Europe 建议的条件下储存、处理和使用,如最新更新的产品数据表中所述。用户有责任确保他们拥有最新更新的副本。最新更新的产品数据表副本可从 www.rust-oleum.eu 免费下载,或向我们的客户服务部索取。 Rust-Oleum Europe 保留更改其产品特性的权利,恕不另行通知。
摘要。越来越广泛地将复合材料用于结构材料迫使复合材料具有出色的机械性能,其中之一就是冲击强度。通过计算从冲击测试获得的影响能量来确定材料的影响强度。许多事情会影响复合材料的强度。已经对复合材料的机械性能进行了许多研究。但是,上述研究尚未研究第二阶段的形态对树脂复合材料的机械性能的影响。第二阶段用作复合材料增强的形态可以是颗粒,短纤维或连续纤维。第二阶段的形状(形态)会影响复合材料的冲击强度。因此,这项研究旨在检查椰子椰子纤维的形态作为第二阶段(增强)的影响,并结合其在环氧树脂树脂基质复合材料中其含量的百分比对撞击强度的影响,并确定最佳形态和第二阶段的百分比。该研究是使用完整阶乘设计的。此外,分析了针对标本的影响强度的数据,以获得第二阶段形态与第二阶段含量在影响强度上的含量之间关系的回归模型。使用此回归模型,可以预测第二阶段各种形态形式的影响强度,并优化第二阶段的最佳含量。
各种光激活“3D”聚合物树脂的需氧生物降解和开发温控室 Seohyun Lee、Shelby Engels、Katy Chapman 可持续发展中心,数学科学技术系 明尼苏达大学,明尼苏达州克鲁克斯顿 摘要 立体光刻 (SLA) 增材制造中使用的紫外光激活聚合物是工业和家庭塑料部件生产中日益增长的工具。与传统的熔融沉积成型 (FDM) 不同,这些聚合物通常由各种挥发性有机化合物 (VOC) 组成,对环境和健康有不利影响。为了抑制这些影响,流行产品制造商生产了宣传“植物基”或“生物基”的产品。这些产品的影响尚不清楚,并留下了许多关于其长期可持续性的问题。该项目专门探讨了这些替代产品在商业堆肥设施中的命运。堆肥利用需氧微生物将有机物分解成矿物成分。堆肥通过将原始有机物转化为二氧化碳 (CO 2 ) 和水来减少其体积。该项目包括两个方面:1) 设计和测试商用堆肥孵化室;2) 商用堆肥条件对这些聚合物分解的影响。本研究旨在通过测量原始聚合物的质量损失和堆肥室中 CO 2 随时间的变化来了解这些化合物在商用堆肥设施中的命运。
添加剂制造能够在短生产时间内生产功能零件,同时提供高度的零件设计和复杂性。近年来,基于DLP和LCD等紫外线固化技术,尤其是添加剂制造技术的材料数量和种类量大大增加了。与这些新材料结合使用添加剂制造,可以在许多最新的传统材料可用并应用的许多工业应用中创建优势。但是,添加剂制造材料和过程是如此新,数据和经验仍然缺少以支持材料选择。例如,与添加剂制造产生的材料直接比较传统的工程热塑性材料的执行方式没有很多数据。
演变图(n = 3)。d)37°C 胶原酶溶液中的酶促材料降解(n = 3)。e、f、g、h)光交联后不同水凝胶配方(分别为 40 DoM、60 DoM、80 DoM、100 DoM)的流变频率扫描(0.1 至 100 Hz)(n = 3)。i、j、k、l)根据独立水凝胶材料的频率扫描计算出的 Tan delta(n = 3)。m) 使用不同水凝胶配方的圆形体积打印模型的归一化形状保真度(n = 3)。n) 使用预期的 STL 模型进行形状保真度计算的体积打印模型作为比较,比例尺 = 5 毫米。o、p) 混合 60 DoM 水凝胶的 CAD 模型和光片重建,分别显示东岛雕像和陀螺模型,比例尺 = 2 毫米。
姜油树脂中主要有效成分是姜辣素和姜烯酚。姜辣素具有多种药理活性,包括抗炎、抗氧化和镇痛作用。然而,姜辣素对热敏感,在高温下会降解,这限制了其在食用生姜时的功能效果。为了克服这些限制,我们进行了姜油树脂封装工艺,以努力改善其物理和功能特性,同时增加向体内的输送量。在本研究中,封装过程采用离子凝胶化方法进行,结果为珠子的形式。海藻酸盐用作姜油树脂的包封材料。使用 FTIR、SEM 分析、崩解测试对干珠进行表征,并通过紫外可见分光光度法评估包封效率。研究结果表明,以海藻酸盐为高分子材料,CaCl2为偶联剂,采用离子凝胶法可以合成载姜油树脂的海藻酸盐珠。本研究测试的姜油树脂浓度为0.9%、0.7%、0.5%和0.3%。当姜油树脂浓度为0.7%时,包封率最高,为72.480%。表面形貌分析表明,海藻酸盐珠具有粗糙多孔的质地,海藻酸盐聚合物中有可见的褶皱。此外,干珠的崩解时间少于30分钟。