摘要。越来越广泛地将复合材料用于结构材料迫使复合材料具有出色的机械性能,其中之一就是冲击强度。通过计算从冲击测试获得的影响能量来确定材料的影响强度。许多事情会影响复合材料的强度。已经对复合材料的机械性能进行了许多研究。但是,上述研究尚未研究第二阶段的形态对树脂复合材料的机械性能的影响。第二阶段用作复合材料增强的形态可以是颗粒,短纤维或连续纤维。第二阶段的形状(形态)会影响复合材料的冲击强度。因此,这项研究旨在检查椰子椰子纤维的形态作为第二阶段(增强)的影响,并结合其在环氧树脂树脂基质复合材料中其含量的百分比对撞击强度的影响,并确定最佳形态和第二阶段的百分比。该研究是使用完整阶乘设计的。此外,分析了针对标本的影响强度的数据,以获得第二阶段形态与第二阶段含量在影响强度上的含量之间关系的回归模型。使用此回归模型,可以预测第二阶段各种形态形式的影响强度,并优化第二阶段的最佳含量。
摘要:将苯并环丁烯改性倍半硅氧烷(BCB-POSS)和二乙烯基四甲基二硅氧烷-双苯并环丁烯(DVS-BCB)预聚物分别引入到由1-甲基-1-(4-苯并环丁烯基)硅环丁烷(4-MSCBBCB)和1-甲基-1-苯基硅环丁烷(1-MPSCB)聚合而成的含苯并环丁烯(BCB)单元的基质树脂P(4-MB-co-1-MP)中,制备出低介电常数(低k)硅氧烷/碳硅烷杂化苯并环丁烯树脂复合材料P(4-MB-co-1-MP)/BCB-POSS和P(4-MB-co-1-MP)/DVS-BCB。通过傅里叶变换红外光谱(FTIR)和差示扫描量热法(DSC)研究了复合材料的固化过程。利用阻抗分析仪和热重分析仪(TGA)研究了不同比例的BCB-POSS和DVS-BCB对复合材料介电性能和耐热性的影响。复合材料的热固化可以通过BCB-POSS或DVS-BCB的BCB四元环与P(4-MB-co-1-MP)的BCB四元环的开环聚合(ROP)进行。随着BCB-POSS比例增加至30%,P(4-MB-co-1-MP)/BCB-POSS复合材料的5%热失重温度(T 5% )明显升高,但由于POSS中引入了纳米孔,介电常数(k)降低。对于P(4-MB-co-1-MP)/DVS-BCB复合材料,随着DVS-BCB比例的增加,T 5%和k略有升高。以上结果表明,BCB-POSS 比传统填料具有优势,可同时提高热稳定性并降低 k。
本文所述产品(以下简称“产品”)的销售受 Huntsman Advanced Materials LLC 或其适当关联公司(包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc. 或 Huntsman Advanced Materials (Hong Kong) Ltd. 以下简称“Huntsman”)的一般销售条款和条件约束。以下内容取代买方文件。Huntsman 保证,在交货时间和地点,向买方出售的所有产品均符合 Huntsman 向买方提供的规格。尽管据亨斯迈所知,本出版物中包含的信息和建议在出版之日是准确的,但本出版物中包含的任何内容(除上述有关符合亨斯迈向买方提供的规格的规定外)均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,买方承担因使用此类信息和建议而产生的任何风险和责任。产品,无论单独使用还是与其他物质结合使用。此处的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述或侵犯任何专利或其他知识产权的诱因。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其自身特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序,并应遵守与产品的处理、使用、储存、分销和处置以及接触有关的所有适用的政府法律、法规和标准。买方还应采取一切必要措施,充分告知、警告并使其可能处理或接触产品的员工、代理、直接和间接客户和承包商熟悉与产品有关的所有危险,以及安全处理、使用、储存、运输和处置及接触产品的正确程序,以及可能处理、装运或储存产品的容器或设备。
摘要:木质纤维素天然纤维具有亲水性,而许多复合材料的基质系统具有疏水性。天然纤维增强聚合物 (NFRP) 基质复合材料要获得良好的机械性能,依赖于界面处良好的纤维-基质结合。增强材料通常涂有两亲偶联剂以促进形成坚固的界面。一种新颖的替代方法是在与基础环氧树脂形成化学计量混合物之前,将偶联剂溶解在树脂硬化剂中。在复合材料制造过程中,偶联剂的亲水 (极性) 端迁移到表面 (内部界面) 并与纤维结合。偶联剂的疏水 (非极性) 端仍嵌入混合树脂中。复合材料样品的机械测试表明,直接添加到基质中的硅烷可产生具有增强纵向性能的 NFRP 复合材料。由于不再需要预处理纤维涂层,新技术具有经济(缩短了处理时间)、环境(消除了受污染的溶剂)和社会(减少工人接触化学蒸汽)等好处。关键词:偶联剂;环氧树脂;硬化剂;界面;天然纤维 1. 介绍
超级电容器是一种重要的电化学储能装置。1~3单个超级电容器由电极、隔膜、电解液和集流体组成,其中电极材料是最重要的组成部分。4超级电容器技术进步的关键在于开发高性能的电极材料。5多孔碳材料在超级电容器电极中得到了广泛的应用,研究日益深入。6,7碳基超级电容器主要利用电极与电解液界面处形成的双电层进行电荷存储。碳材料的孔结构,包括比表面积、孔径及尺寸分布,是决定碳电极材料电容性能的关键。8,9
引言胶结对于确定陶瓷修复的最终成功和寿命至关重要。1,2陶瓷贴面失败的主要原因与胶结过程有关。3选择用于胶结的树脂水泥的足够聚合会影响修复和界面的应力传播。4固定树脂水泥被认为是胶结陶瓷饰面的更好材料。5受控的工作时间,容易去除过量的材料,对操作员的技术敏感性低,薄膜厚度,良好的物理特性,低溶解度和良好的粘附是支持选择轻固化树脂水泥的某些特征。6,7固定过程对于这类树脂水泥的适当聚合至关重要,影响了陶瓷贴面的长期临床性能
根据电磁有限元法的轶事经验,这种复杂性估计为 O(N^2)。因此,理论上,将问题体积减少四倍可将解决时间减少十六倍。一个简单的比较示例是根据所述透镜问题在一个频率(35 GHz)下构建的,在 HFSS 版本 2021R2 中仅进行一次自适应传递,并在一台运行速度为 3.50GHz 的两台 8 核 Intel(R) X eon(r) Gold 6144 处理器的计算机上运行。(由于购买了基本多核 HFSS 许可选项,因此在这些模拟示例中仅使用了四个内核。)四分之一模型产生 47,588 个四面体并在 131 秒内解决,而完整模型产生 181,817 个四面体并在 2143 秒内解决。因此,此示例的速度提高了 16.35 倍。请注意,这些比较的是总运行时间,而不仅仅是矩阵求解时间。
彩色皮秒声学 (CPA) 和光谱椭圆偏振术 (SE) 相结合,测量沉积在 300 毫米晶圆上的聚合物薄膜树脂的弹性和热弹特性。使用 SE 测量膜厚度和折射率。使用 CPA 根据折射率测量声速和厚度。比较两种厚度可以检查两种方法之间的一致性。然后在 19 ◦ 至 180 ◦C 的不同温度下应用相同的组合。随着样品被加热,厚度和声速都会发生变化。通过分别监测这些贡献,可以推导出声速温度系数 (TCV) 和热膨胀系数。该协议适用于目前微电子工业使用的不同薄膜树脂制成的五种工业样品。杨氏模量在不同树脂之间相差高达 20%。每种树脂的 TCV 都很大,并且从一个树脂到另一个树脂的相差高达 57%。
Ferula Tadshikorum pimenov是一种多年生,单核,强烈而令人不愉快的味道芹菜家族的草本植物(Umbelliferae) - apiaceae(Umbelliferae),在23-27(30-27年)进行了大量的生命周期。它在共和国南部地区的山区中部生长 - 喀什卡达里亚和Surkhandarya地区[1-3]。药用原材料都在地下(在根的空气乳汁中发生)和植物的地上部分。树脂(9.35-65.15%),口香糖(12-48%)和精油(5.8-20%)代表了根的乳状汁的化学成分。阿雷齐诺醇,阿萨雷酚及其系素衍生物:Farnesiferol C和Umbelliferon从树脂中分离出来[4-5]。