为了满足围绕电池效率和环境可持续性的法规,汽车制造商必须在整个车辆的生活中保持高水平的电池健康。例如,加利福尼亚空气资源委员会提出了标准,该标准要求电动汽车至少在2030年保持10年或150,000英里的电动范围。这是对较小要求的最终结果,该要求早在2026年型,并在2031年以后的规定继续收紧法规。类似的标准已经在世界各地生效,因此需要在BMS内进行更先进和集成的解决方案,以提高感应精度。在本文中,我将展示集成的高压电阻分隔器如何提供与离散电阻链相比,可以为电压衰减提供更精确,更高的方法,从而使BMS能够更好地平衡电池组并改善其寿命。
要了解接触电阻的起源,我们对层边界附近的电流分布进行了建模。由于在室温下,NBN的the the the the the the the the the the the the the接触面积的模拟3(a)。建模表明,几乎所有电流都从层的重叠开始时大约10 nm的距离转移到MO。因此,MO接触垫的电阻有助于总电阻。根据图从图中的图中获得的𝑅2(a),多余的电阻为1.3 - 1.5正方形。在我们的样品电流和潜在接触中位于侧面(图1A,B,D,E)。因此,我们在接触板中模拟了90°转动的电流流量,如图3(b)。对各个长度的条进行的仿真表明,两个方形的接触垫贡献了2.7𝑅(图。3(d))比𝑅0的实验值大,可以通过建模的结构和实际样品之间的相应性不确定来解释。
作者的完整列表:纳塔利亚的Alzate Carvajal;渥太华大学物理公园,Jaewoo;渥太华大学,伊利姆物理Bargaoui;渥太华大学,物理学劳特拉,兰贾纳;渥太华大学,Zachary物理学;渥太华大学,化学与生物工程系,加拿大卢卡斯·斯卡夫;渥太华大学,物理梅纳德(Ménard),让·米歇尔(Jean-Michel);渥太华大学,塞思物理学达令; Argonne国家实验室,贝诺特分子工程中心;渥太华大学工程,化学与生物工程学院,阿迪纳(Adina);渥太华大学,物理
1 产品简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 快速参考数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
1 产品简介....................................................................................................................................................................................................1 1.1 概述..................................................................................................................................................................................1 1.2 特点..................................................................................................................................................................................................1 1.3 应用..................................................................................................................................................................................................1 1.3.1 应用范围..................................................................................................................................................................................1 1.3.2 特性..................................................................................................................................................................................1 1.3.3 应用范围..................................................................................................................................................................................1 1 1.4 快速参考数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
摘要——我们提出了一个比其他直接量子计量三角比较具有一些优势的实验。首先,通过使用可校准的低温电阻,量化霍尔电阻 (QHR) 标准只需在短时间内使用。其次,该实验不需要电压检测器。这消除了一个外部噪声源并允许快速电流反转。第三,主要比较系统中也没有可能导致过度噪声和超导量子干涉装置通量跳跃行为的反馈。该实验可以在更高的电流下运行,并且长时间无人监督,从而受益于噪声的统计降低。我们开发了一种低温电流比较器,用于直接根据 QHR 校准低温电阻。