如今,基于石英谐振器的参考振荡器的工作频率被限制在几百兆赫。从这样的参考振荡器中获取千兆赫范围的信号需要倍频或频率合成。然而,倍频过程会根据倍频系数的 20log 10 增加输出信号的相位噪声,同时也会增加电路的复杂性。从这个意义上讲,直接在毫米 (mm-) 波段的基频上产生 LO 信号是有利的。然而,这需要一个高质量 (Q-) 因子谐振器,最好在几千兆赫下工作。采用金属腔的传统无源谐振器的 Q 因子受到金属中的电阻损耗的限制。或者,基于陶瓷谐振器的直接在基频下工作的振荡器提供平均相位噪声,并且通常在 25 GHz 以上不可用。
摘要:在通常的具有偶数格点的Su–Schrieffer–Heeger(SSH)模型中,由于边缘态同时占据两端点,因此不易实现左右边缘态之间的拓扑泵浦。本文提出一种方案,研究由一维超导传输线谐振器阵列映射的偶数尺寸周期调制SSH模型中的拓扑边缘泵浦。我们发现最初在第一个谐振器中准备的光子最终可以以一定的比例在两端谐振器处被观察到。两端谐振器处最终的光子分裂表明本超导电路有望实现拓扑分束器。进一步,我们证明了两端谐振器之间的分裂比例可以从1到0任意调节,这意味着实现可调拓扑分束器是潜在的可行性。同时,我们还证明了可调拓扑分束器由于零能量模式的拓扑保护而不受系统中加入的轻微无序的影响,并且发现可调拓扑分束器对全局现场无序的鲁棒性远高于对最近邻无序的鲁棒性。我们的工作极大地拓展了拓扑物质在量子信息处理中的实际应用,为拓扑量子光学器件的工程化开辟了一条新途径。
Basics of lasers & laser properties: Interaction of light with matter (Absorption, spontaneous and stimulated emissions), Einstein coefficients and light amplification, Einstein coefficients and finding their relationships, Population inversion, Laser rate equations, Three-level, and four-level laser systems, Optical resonators, Axial and transverse modes, Q-switching and mode locking,激光,时间相干性,空间相干性,单色性,方向性,亮度,线宽,激光辐射和可调性的聚焦特性的相干性能。激光的类型:掺杂的激光器(固态激光器):ND Ruby Laser:YAG和ND:玻璃激光器,气体激光器:原子激光器:He-ne Laser;离子激光器:氩激光;分子激光器:二氧化碳激光,氮激光器和准分子激光;液体染料激光;半导体激光器。
和处理7,范围8,微波光子学9,双弯曲光谱学10和天文学光谱仪校准11。这些孤子作为Lugiato – Lefever方程的局部溶液12,13(LLE)出现,可以在具有高质量因素的谐振器中观察到。CSS的出现依赖于一侧异常的群体色散(GVD)和Kerr非线性之间的双重平衡,以及在另一侧的损耗和能量注入(通常是通过连续波(CW)激光泵)之间的双重平衡。由于它们的高质量因子和紧凑的设计(数百微米的空腔长度),微孔子在过去十年中引起了显着的注意力。De- spite these impressive performances, launching and collect- ing light in these resonators can be challenging, requiring ad- vanced fiber coupling devices such as a prism fiber taper 15 or advanced coupling methods for chip microresonators 16 , and while progresses on packaging are on going, it is still an ob- stacle for fiber applications.在谐振器中产生OFC的另一种方法是,在长度为117米的全纤维环腔中,其有效质量因子可以通过在腔体18中包括一个放大器来达到数百万。使用这些谐振器架构获得的光谱延伸到几个THZ上,几乎就像微孔子一样,但它们具有两个主要缺点。首先,线间距在MHz范围内,该范围限制了应用程序范围(主要在GHz范围14中),其次,它们不是Com-
天线应用•人工智能(AI)应用于天线设计。•无线电动汽车(EV)电池充电器•用于成像技术的天线和谐振器•微波和60GHz MM波浪天线和电路•用于物联网应用的天线和直立性•诊断和治疗性电磁应用•使用远程材料•远程材料•远程材料•远程图像•远程图像•远程图像•远程图像• Microwave Systems and Applications • Antennas and Resonators on Glass • MHz-to-THz Sensors for Healthcare Applications • Mm- wave and THz Systems for Sensing and Communications • Nano Electromagnetics • Wearable Microwave Components, Antennas, and Systems • Smart Antennas, Digital Beam Forming and MIMO Antennas and
对于小型汽车雷达来说,微型的平面天线,任何雷达系统的头发和眼睛都知道自50年代以来的巨大进展。微带天线阵列被最大的汽车制造商用于雷达[5] - [7],因为重量轻,并且成本低成本制造以用于大量产量,但是它们的主要弱点是由于焦耳效应和狭窄的带宽而导致的能量损失,这限制了在MM-Wave和超越MM Wave和超越斑点天线的使用。然而,在1983年著名的Long实验[9]之后,发现了微带天线的艰苦竞争者和雷达系统的出色候选[8],这是介电谐振器天线(DRA),其中金属散热器被介电材料代替。传统上,介电谐振器成功用于MM波谐振器和微波炉,但没有人想到使用它们来辐射电磁波。
紧凑型和高速电光调节器在各种大规模应用中起着至关重要的作用,包括光学计算,量子和神经网络以及光通信链路。常规的电折射量器调节剂Suchassilicon(SI),III-VandGrapaPheneSissufferFromaFundAmentalTradeOffbetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetBetbetBetBetBetBetBetBetBetBetbetBetBetBetBetBetWeendevicElength和光损失限制了他们的缩放功能。高插条环谐振器被用作合并强度调节器,但是由于与相移相关的高插入损失,它们对相位调制的使用受到限制。在这里,我们表明,高核谐振器可以通过同时调制折射率的真实和虚构部分,从而在相同的程度上,即1 N
摘要:环形谐振器是硅光子学中滤波器、光延迟线或传感器的重要元件。然而,目前工厂中还没有低功耗的可重构环形谐振器。我们展示了一种使用低功耗微机电 (MEMS) 驱动独立调节往返相位和耦合的加/减环形谐振器。在波长为 1540 nm 且最大电压为 40 V 的情况下,移相器提供 0.15 nm 的谐振波长调谐,而可调耦合器可以将直通端口处的光学谐振消光比从 0 调节到 30 dB。光学谐振显示出 29 000 的被动品质因数,通过驱动可以增加到近 50 000。MEMS 环在晶圆级上单独真空密封,能够可靠且长期地保护免受环境影响。我们循环机械致动器超过 4 × 10 9
控制量子位的状态涉及操纵其量子态以执行所需的操作。这种操纵通常涉及应用量子门序列 [3],它们类似于经典逻辑门,但作用于量子态 [4]。这些门可以确定性地改变量子位的状态,从而产生叠加和纠缠,以及计算所需的其他量子操作。测量量子位的状态涉及确定其在特定时刻的量子态。量子位耦合到位于其物理位置附近的微波谐振器。正是通过这些谐振器,可以确定或“读出”量子位的状态。确定量子位状态的一种常用技术是色散读出法 [5]。该方法利用了这样一个事实:量子位的状态对读出谐振器的某些宏观参数(例如其谐振频率)有直接影响。
vblhep Jinr主持了有关超导谐振器和快速骑自行车磁铁的研讨会,这是Jinr与中国科学院现代物理学研究所之间合作的一部分。各方讨论了为NICA和HIAF项目开发的新技术和前景的问题。