先前或同时发生的上呼吸道(合并)感染会对下呼吸道疾病产生有害的传导作用。下呼吸道(合并)感染是全球发病率和死亡率的共同根源 [1]。人类上、下呼吸道感染的临床表现可能复杂且异质性强,因为病原体(即细菌、真菌、病毒和寄生虫)可以单独存在,也可以组合存在。例如,人们越来越多地认识到病毒-细菌(合并)感染的后果会影响社区获得性肺炎的表现和预后,并可深刻影响呼吸道疾病的伴随发展,经常导致需要重症监护 [2-6]。1 岁以下儿童、孕妇、老年人和免疫功能低下的宿主尤其容易受到影响。患有合并症的免疫功能正常的个体也面临更高的严重呼吸道感染风险,而这些感染往往需要重症监护 [7]。最近的 COVID-19 大流行进一步强调,病毒与真菌和细菌(合并)感染相结合时,往往会对人类健康产生毁灭性的影响 [8]。毫无疑问,呼吸道(合并)感染的负担是对全球健康的重大威胁,及时准确的诊断是普遍存在的必要性 [9,10]。考虑到抗生素耐药性微生物日益严重的普遍问题,对急性呼吸道(合并)感染进行快速准确的诊断在临床上非常重要,以降低长期(合并)感染的风险并提前应用针对病原体的特异性药物 [11,12]。例如,多重聚合酶链式反应 63 (PCR) 检测可在单一面板中对多种呼吸道病原体和抗菌素耐药性 (AMR) 标记物进行高级诊断,从而缩短诊断时间并减少
猪繁殖与呼吸综合征病毒(PRRSV)已困扰养猪业 30 多年,造成了巨大的经济损失。目前,市场上有各种不同的商业疫苗,但治疗手段有限。到目前为止,至少有六种潜在的宿主因子被确定为 PRRSV 感染的关键受体。其中,CD163 分子是 PRRSV 生命周期中最重要和最关键的分子,负责介导病毒脱壳和基因组释放。它决定了靶细胞对病毒的敏感性。研究表明,在猪 CD163 蛋白表达的情况下,几种 PRRSV 非允许细胞(如 PK-15、3D4/21 和 BHK-21)对 PRRSV 感染完全敏感。因此,CD163 已成为设计新型抗病毒分子(破坏 CD163 与病毒糖蛋白之间的相互作用)或培育抗 PRRSV 感染的基因改造动物的靶标。本综述全面总结了近年来针对CD163受体抑制PRRSV复制的研究进展,并讨论了在病毒生命周期脱壳过程中是否还有其他潜在分子与CD163相互作用。
电子烟的用法(也称为电子烟或烟产品)越来越被认为是全球公共卫生问题。尤其是一个挑战是对未成年人(青少年和儿童)的营销以及该人群中使用率的上升。电子烟不必要地暴露于未成年人的健康风险中,其中包括呼吸健康问题,例如哮喘,支气管炎和呼吸道刺激的加剧。尼古丁在电子烟中常见,也与认知障碍和神经发育问题有关。电子烟也是下游药物使用的风险因素,包括香烟和大麻启动(Gateway假设),它使双重用户的健康风险更加复杂。当前的公共卫生预防和干预研究是有限的,并且明显需要进行更多干预措施,以防止使用并帮助停止这种脆弱的人群。医师的教育和筛查吸收也应得到增强。在全球范围内还需要采取更严格的公共卫生政策和保护措施,以限制未成年人的电子烟暴露。
抽象暴发1型糖尿病的特征是由病毒感染触发的胰岛素缺乏症的快速发展。在这里,我们报告了一例45岁的日本女性患有1型糖尿病的日本妇女,该妇女在接收到严重急性呼吸综合症冠状病毒2的信使核糖核酸疫苗后出现了8天。她一直很健康,没有暗示疫苗接种前病毒感染的症状。实验室测试表明胰岛素分泌的精疲力尽和胰岛自身抗体的阴性结果。人类白细胞抗原基因型分析显示DRB1*04:05和DQB1*04:01等位基因。这是严重急性呼吸道综合征冠状病毒2疫苗接种后新发育1型糖尿病的第一份病例报告,并表明严重的急性呼吸综合症冠状病毒2疫苗可能会触发易于敏感个体中富裕人的1型糖尿病的发作。但是,仍有待确定因果关系,需要进一步的研究来确定此类病例的发生率。
与肠道相关的代谢产物与呼吸道疾病有关。肠道和肺之间的串扰表明,肠道健康可能在Covid-19中受到损害。本研究的目的是分析与肠道相关的代谢产物(乙酰-l-肉碱,甜菜碱,胆碱,L-肉碱,三甲基胺和三胺N-氧化物N-氧化物)的患者,与健康的个体和非concovid-19呼吸症状相匹配的患者,与健康的患者相匹配。作为结果,该小组的代谢产物在COVID-19患者中受到损害,并且与呼吸困难和温度的症状有关,并且可以区分Covid-19和哮喘。初步结果表明,较低水平的Betaine似乎与Covid-19患者的结局差有关,这表明BETAINE是肠道微生物组健康的标志。©2022 Elsevier Inc.保留所有权利。
摘要背景/目的:鲍曼不动杆菌是一种重要的院内病原体。为了更好地了解鲍曼不动杆菌 CsuA/BABCDE 菌毛在毒力中的作用,进行了细菌生物膜形成、粘附和碳水化合物介导的抑制研究。方法:克隆鲍曼不动杆菌 ATCC17978 的 CsuA/BABCDE 菌毛产生操纵子(简称 Csu 菌毛),以分析非生物塑料平板上的生物膜形成、细菌对呼吸道上皮人 A549 细胞的粘附和碳水化合物介导的抑制。用于抑制生物膜形成和对 A549 细胞粘附的碳水化合物包括单糖、吡喃糖苷和甘露糖聚合物。结果:将鲍曼不动杆菌ATCC17978的Csu菌毛克隆表达到不产生菌毛的大肠杆菌JM109中,并将其敲除。在电镜和原子力显微镜下观察大肠杆菌JM109/rCsu菌毛产生克隆上重组Csu(rCsu)菌毛丰富,而Csu敲除的鲍曼不动杆菌ATCC17978
标题 1 闭环颈部硬膜外刺激在自由活动大鼠脊髓损伤后诱发呼吸神经可塑性 2 3 缩写标题 4 硬膜外刺激诱发呼吸神经可塑性 5 6 作者姓名及所属机构 7 Ian G. Malone 1,2 , Mia N. Kelly 2,3 , Rachel L. Nosacka 4 , Marissa A. Nash 4 , Sijia Yue 5 , Wei Xue 5 , Kevin J. Otto 1,2,6,7,8,9,10 , 8 和 Erica A. Dale 2,4,6 9 1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611 10 2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611 11 3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611 12 4 佛罗里达大学生理学和功能基因组学系,佛罗里达州盖恩斯维尔 32611 13 5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611 14 6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611 15 7 J. Crayton Pruitt Family 佛罗里达大学生物医学工程系,佛罗里达州盖恩斯维尔 32611 16 8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611 17 9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611 18 10 佛罗里达大学神经科学系,佛罗里达州盖恩斯维尔 32611 19 20 通讯作者电子邮件地址 21 电子邮件:ericadale@ufl.edu 22 23 内容信息 24 图表数量:9 25表格数量:0 26 多媒体数量:0 27 字数:28 x 摘要:235 29 x 意义陈述:119 30 x 引言:660 31 x 讨论:2,003 32 33 致谢 34 作者要感谢佛罗里达大学 Dale 实验室、NeuroProstheses 研究实验室和 35 Mitchell 实验室的所有成员提供的技术指导。我们感谢 Raphael Perim 博士、Kaitlynn Olczak 博士和 Yasin Seven 博士提供的技术支持、帮助和指导;感谢 Larry Shupe 博士、Chet Moritz 博士和 Eberhard Fetz 博士提供的 Neurochip3 硬件并协助排除故障;最后,感谢 Jennifer Bizon 博士、Jada Lewis 博士、Peter Sayeski 博士、38 David Fuller 博士、Gordon Mitchell 博士、Charlie Wood 博士和 Stephen Sugrue 博士的支持和指导。 39 40 利益冲突 41 本稿件的作者声明他们没有利益冲突。 42 43 资金 44 这项工作得到了 Craig H. Neilsen 基金会、麦克奈特脑研究所和佛罗里达大学脑 45 和脊髓损伤研究信托基金、NIH T32 HL134621 呼吸研究和治疗培训计划、46 HL147554、NIH U01 NS099700 和佛罗里达大学学者计划的支持。 47 48
a 加拿大多伦多大学家庭医生航空集团,加拿大多伦多 b 诺华制药公司,新泽西州东汉诺威 c 加拿大不列颠哥伦比亚大学医学系呼吸医学分部,不列颠哥伦比亚省温哥华 d 马萨诸塞州剑桥诺华生物医学研究所 e 荷兰格罗宁根全科医师研究所 f 格罗宁根大学,格罗宁根大学医学中心,GRIAC 研究所,荷兰格罗宁根 g 新加坡观察与实用研究所,新加坡 h 约阿尼纳大学医学院呼吸医学系,希腊约阿尼纳 i 新加坡观察与实用研究所,新加坡 j 阿伯丁大学应用健康科学部学术初级保健中心,英国阿伯丁 k 悉尼大学伍尔科克医学研究所,澳大利亚新南威尔士州悉尼 l 克里特岛大学医学院社会医学系,希腊伊拉克利翁 m 医学系,肺部和重症监护医学,吉森和马尔堡大学医学中心,菲利普斯马尔堡大学,德国肺研究中心 (DZL) 成员,德国马尔堡,诺华制药公司,瑞士巴塞尔 本研究的医学写作由诺华制药公司资助。利益冲突:A. Kaplan 是阿斯利康、贝林、勃林格殷格翰、Covis、Griffols、葛兰素史克 (GSK)、默克 Frosst、辉瑞、诺华、NovoNordisk、Teva 和 Trudel 的医学顾问或发言人。H. Cao 是新泽西州东汉诺威诺华制药公司的员工。J. M. FitzGerald 因参加诺华公司的顾问委员会和演讲局活动而获得个人费用,不列颠哥伦比亚大学也从诺华公司获得了研究资金。N. Iannotti 和 E. Yang 是马萨诸塞州剑桥市诺华生物医学研究所的员工。J. W. H. Kocks 自述获得阿斯利康、勃林格殷格翰、Chiesi Pharmaceuticals、葛兰素史克、诺华、Mundipharma 和 Teva 的资助、个人费用和非财务支持,并持有全科医生研究所 72.5% 的股份。K. Kostikas 曾获得阿斯利康、勃林格殷格翰、Chiesi、ELPEN、GSK、美纳里尼、诺华、NuvoAir 和 Sano 的资助、个人费用和非财务支持,并且曾是诺华制药公司的员工和股东(截至 2018 年 10 月 31 日)。D. Price 是安进、阿斯利康、勃林格殷格翰、Chiesi、Circassia、Mylan、Mundipharma、诺华、再生元制药、Sano Genzyme、Teva Pharmaceuticals 和 Thermo Fisher 的董事会成员,并与安进、阿斯利康、勃林格殷格翰、Chiesi、葛兰素史克、Mylan、Mundipharma、诺华、辉瑞、Teva 签订了咨询协议
背景:在外表看似健康的受试者和一些临床人群中,心肺健康(CRF)与死亡率呈负相关,但缺乏证据表明 CRF 与已确诊 CVD 患者的全因和/或心血管疾病(CVD)死亡率之间存在关联。本研究旨在量化这种关联。方法:我们搜索了前瞻性队列研究,这些研究使用心肺运动测试测量 CVD 患者的 CRF,并研究了至少 6 个月的随访中的全因和 CVD 死亡率。使用随机效应逆方差分析计算汇总风险比(HR)。结果:数据来自 21 项研究,包括 159,352 名确诊患有 CVD 的患者(38.1% 为女性)。最高和最低 CRF 类的全因死亡率和心血管疾病死亡率的汇总 HR 分别为 0.42(95% 置信区间 (95%CI):0.28 0.61)和 0.27(95%CI:0.16 0.48)。每增加 1 个代谢当量 (1-MET) 的汇总 HR 对全因死亡率 (HR = 0.81;95%CI:0.74 0.88) 有显著影响,但对心血管疾病死亡率 (HR = 0.75;95%CI:0.48 1.18) 无显著影响。与体质不健康的冠心病患者相比,CRF 水平高的冠心病患者的全因死亡风险 (HR = 0.32;95%CI:0.26 0.41) 较低。每增加 1-MET 都与冠心病患者的全因死亡风险降低相关(HR = 0.83;95%CI:0.76 0.91),但与心力衰竭患者的全因死亡风险降低无关(HR = 0.69;95%CI:0.36 1.32)。结论:更好的 CRF 与较低的全因死亡和 CVD 风险相关。本研究支持使用 CRF 作为该人群死亡率的有力预测指标。
我们采用混合接种模式,所有卫生委员会主要邀请这个年龄段的人到疫苗接种中心,一些地区也在特殊学校提供疫苗接种。这种模式的优势在于它以本地知识为基础,灵活敏捷,可根据情况进行更改。威尔士的 16 岁和 17 岁青少年都已接种疫苗(JCVI 建议只接种一剂),迄今为止,超过 70% 的人接受了接种。当他们年满 18 岁三个月后,将为他们接种第二剂。加强疫苗接种计划 JCVI 建议,在 Covid-19 疫苗接种计划第 1 阶段接种疫苗的个人(优先群体 1-9)应在接种第二剂后六个月内接种 Covid-19 加强疫苗。这包括: