由球形栅格组成的减速场分析仪(RFA)可用作二维角分辨光电子能量分析仪(Kanayama等,1989)。然而,传统三栅格RFA的典型分辨力(E / E)为100(Taylor,1969),对于光电子衍射或光电子全息术来说太低了(Matsushita等,2010)。我们之前报道了一种增强E / E的栅格排列(Muro等,2017)。在改进的排列中,第一和第二栅格之间的距离比第二和第三个栅格之间的距离长得多,如图1(a)所示,而在大多数传统RFA中,这些距离是相同的。采用改进布置在 SPring-8 的 BL25SU(Senba 等人,2016 年)上开发的 RFA 显示 E / E 为 1100(Muro 等人,2017 年)。第一、第二和第三个栅格的半径分别为 12、40 和 42 毫米。第二个栅格即减速栅格使用目数为 250 的编织钨网。光电子接受角为 49 度,受图 1(a)所示探测器直径的限制。我们的模拟还预测,当网状减速栅格被部分球壳(如带有径向圆柱孔的圆顶)取代时,E / E 可以进一步增强,如图 1(b)所示。以下我们将这样的栅格称为有孔栅格。试验性制作了一个开孔面积较小的网格,对应接收角为7°,圆柱直径为60 mm,深度即球壳厚度为100 mm,相邻两个孔中心位置之间的距离即孔距为100 mm,球壳内半径为40 mm,与网状减速网格相同。装有该网格的RFA
摘要。膨胀型阻燃粘合剂 (IFRB) 为近年来各种被动防火系统最有效的利用提供了巨大的进步。本文重点介绍了使用本生灯和热重分析的 IFRB 的耐火性和热性能。将五种 IFRB 配方与蛭石和珍珠岩混合,制造防火木门原型。此外,在 2 小时的防火测试下对防火门原型进行了比较。密度低至 637 kg/m3 的原型 (P2) 表现出极高的耐火等级性能,与原型 (P1) 相比,温度降低了 58.9 °C。值得注意的是,一种添加了配方膨胀型粘合剂的创新型防火木门原型已被证实可有效阻止火灾并保持其完整性,耐火期长达 2 小时。