库汉技术大学材料综合与加工高级技术的国家主要实验室https://orcid.org/0009-0009-0008-1431-7443
逐渐耗尽。此外,它还逐渐消耗海马中的热休克转录因子1,从而对成年海马神经发生产生负面影响。此外,不仅Piezo2-Piezo2 Crosstalk在本体感受性的初级传入终端和由于丢失的Piezo2引发的Huygens同步而逐渐逐渐破坏了ALS,但Piezo2-Piezo1 crosstalk在Peripery上也破坏了。Syndecans,尤其是神经系统中的Syndecan-3,是维持此压电串扰的关键参与者。syndecan-3的检测到的电荷改变变体可能会促进压电串扰的损害,以及对运动神经元和海马的基于质子的信号的进行性损失。kCNA2的变体还可以促进
本质上,大多数已知的对象只有在超分子自组装中,例如蛋白质复合物和细胞膜。在这里,出现了树突状聚合物,该聚合物只有在自组装成二维超分子聚合物(2D-Suprapol)时,才抑制具有不可逆(病毒)机制的严重急性呼吸综合征2(SARS-COV-2)。单体类似物只能可逆地抑制SARS-COV-2,从而使该病毒在稀释后恢复感染性。组装后,2D-苏普醇在体外表现出显着的半抑制浓度(IC 50 30 nm)和叙利亚仓鼠模型中的体内具有良好的效果。使用冷冻-TEM,可以证明2D-Suprapol具有可控的侧向尺寸,可以通过调整pH值并使用小角度X射线和中子散射来调整,以揭示超分子组件的结构。提出了这种功能性的2D-Suprapol及其超分子结构,作为预防性鼻喷雾剂,可抑制病毒与呼吸道的相互作用。
摘要。任意的神经风格转移旨在通过引用提供的样式图像来造型内容。尽管为实现内容保存和样式转移性而进行了各种努力,但由于内容和样式功能的重复导致了不愉快的图像人工制品,因此对此任务的学习表现仍然具有挑战性。在本文中,我们学习了从信息理论的角度进行动机的风格的紧凑神经表示。在特殊的情况下,我们在可逆流网络的顺序模块上执行压缩表示,以减少特征冗余,而失去内容保存能力。我们使用Barlow Twins损失来减少信道依赖性,从而提供更好的内容,并优化参考图像和目标图像之间样式代表的Jensen-Shannon差异,以避免使用 - 和
1肿瘤科,西德尼·金梅尔综合癌症中心,约翰·霍普金斯大学,马里兰州巴尔的摩; 2宾夕法尼亚州费城宾夕法尼亚大学艾布拉姆森癌症中心血液学/肿瘤科医学系; 3医学系,加利福尼亚州洛杉矶加州大学洛杉矶分校的大卫·格芬医学院; 4马萨诸塞州波士顿哈佛医学院马萨诸塞州综合医院癌症中心医学系; 5纽约州纽约市威尔·康奈尔医学和纽约长老会医院医学系; 6纽约州布法罗市罗斯威尔公园综合癌症中心医学系; 7伊利诺伊州芝加哥西北大学的罗伯特·H·卢里综合癌症中心,血液学/肿瘤学系医学系; 8日本东京的富士公司; 9 Fujifilm Pharmaceuticals USA,Inc,马萨诸塞州剑桥;和10医学系血液学/肿瘤科,海伦·迪勒综合癌症中心,加利福尼亚大学旧金山分校,旧金山,加利福尼亚州
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月3日。; https://doi.org/10.1101/2024.04.04.04.04.04.04.04.04.04.04.02.587827 doi:biorxiv Preprint
对高离子电导率的Na-ion固体电解质(SES)的摘要设计和与阴极隔离的出色的化学/机械兼容性对于全稳态的Na-ion电池(Assnibs)仍然具有挑战性。在这项研究中,我们成功设计和合成了一种新型的无定形NATACL 6 HALIDE SE,其在室温下为4 3 10 3 S cm 1的离子连续性为4 3 10 3 s cm 1。异常的离子电导率是由独特的重建无定形多聚(TACL 6)八面体网络产生的,其通过高能机械化学反应削弱了Na-Cl相互作用。值得注意的是,与Na 3 V 2(PO 4)3(PO 4)3(PO 4)3(pO 4)3(pO 4)在Assnibs中的阴极相结合时,无形的NATACL 6卤化物表现出显着的机械性能,化学/电化学稳定性以及出色的电化学性能,从而导致了显着的初始良性效率,可恢复99.60%的效率(85%),并呈现出色的速度(85%)。长周期pro文件(4,000/600/1,500循环在3/1/0.5 C)后(81%/95%/98%的容量保留)。这一发现超级离子无定形的Na-ion Halide SES为提高高性能Assnib的有前途的途径。
2023 年 9 月 21 日 摘要。通过参考与共轭可观测量相关的联合熵,证明了兰道尔原理的一种限制形式对热系统成立,与计算考虑无关。结果表明,不可逆物理过程的补偿熵的来源是由于这种相互不相容的可观测量值的本体论不确定性,而不是由于信息论方法中传统假设的认识论不确定性。特别是,明确表明通过重置操作擦除逻辑(认识论)信息并不等同于擦除热力学熵,因此物理学不支持传统的信息论形式的兰道尔原理。分析的另一个含义是现实世界中没有麦克斯韦妖。关键词:兰道尔原理、热力学、量子信息、熵 1. 简介。兰道尔原理 (LP) 最初是由兰道尔从计算的角度提出的。具体来说,兰道尔 (1961) 提出,从事逻辑上不可逆步骤的“计算机器”每一步的成本约为 kT。虽然 LP 已被广泛接受,但仍有少数人持不同意见(例如 Earman 和 Norton 1999;Norton 2005-2018;Hemmo 和 Shenker 2021)。虽然本文作者与反对者一起对兰道尔原始提议中固有的物理不可逆性与逻辑/计算不可逆性的认定提出异议,但我们仍然为 LP 的受限形式提出了物理基础:它不与计算相联系,而是与一类更窄的真正不可逆的物理过程相联系。如果测量是一个物理上不可逆的过程,人们可能会认为这是西拉德原理的一种形式;本研究表明它确实如此。在提出这一观点时,我们希望提请大家注意认识论和本体论不确定性(或“信息”)之间的关键区别,这一区别在热力学和第二定律的讨论中往往被忽略。我们注意到,正如经典统计力学所假设的那样,认识论不确定性可以说无法非循环地产生第二定律或兰道尔原理(参见 Kastner 2017),而本体论不确定性对于两者的成立都是必要的。这一考虑意味着 LP 的受限形式,它不依赖于传统上假设的认识论不确定性。从本质上讲,LP 确实是
更广泛的背景是新的负发射技术的发展以及先进的多模式表征和测试方法对于加快可持续未来的建设至关重要。作为一种有希望的下一代负发射技术,锂–Co 2电池(LCB)作为先进的储能设备,由于其独特的使用CO 2作为反应物,因此引起了极大的关注。尽管如此,有效的LCB的发展仍处于其新生阶段,挑战较大,诸如较大的过度势力,低能效率和差的可逆性,这不仅强调了对快速探索高效电催化剂的需求,而且还需要对深度研究进行更深入的研究,以对其潜在的机械性进行更深入的理解。LCB的电催化剂勘探的常规方法主要依赖于试验方法和单峰表征/测试技术,既效率低下又耗时。因此,建立一个流线型的材料属性测试平台,该平台允许快速催化剂筛选和多模式表征,并具有出色的时间和纳米级空间分辨率,这对于实现了这项新兴技术的更全面的理解,知情的决策和最佳设计至关重要。预计该多模式平台的实施将实质上解锁新的前景,用于快速催化剂筛查,机制调查和实际应用,涵盖从纳米科学和技术到最先进的负面发射技术(LCBS和其他电动促进系统)。在这项工作中,我们开发了一个开创性的多式模式实验室电化学测试平台,以同时实现有效的催化剂筛选(确定性电催化源评估和操作条件优化),并集成了对2转化率的现场探测2 COCONION EXTROCHEMISTION(FORCBERTISTION ANAPECTION ANAPECTION ANAPECTION ANAPECTION ANTICE COMPATION,FORDSENBERTIDER,FORDBESTERS和MARPHONTIFER)。
SCOV-2的类似木瓜蛋白酶样蛋白酶(PLPRO)是病毒复制的必不可少的蛋白质,也是开发小分子药物的有吸引力的靶标。11 - 14 PLPRO在病毒复制15 - 17中起着至关重要的作用,并防止受感染的细胞产生干扰素,这对于安装针对SCOV-2的免疫反应至关重要。12,18,19 PLPRO裂解肽序列LXGG(X表示任何氨基酸),该氨基酸存在于未成熟SCOV-2病毒多蛋白的3个位点中。PLPRO催化了未成熟病毒多蛋白的三种非结构蛋白的释放,称为NSP1,NSP2和NSP3。12 NSP1,NSP2和NSP3在病毒复制中起关键作用,并抑制PLPRO块SCOV-2在细胞中的复制。20 PLPRO还切开包含序列RLGG的宿主蛋白,该蛋白存在于几种泛素(Ub)和泛素样蛋白(UBL)中,例如干扰素诱导的基因15(ISG15)蛋白。21 PLPRO具有显着的去渗透和去泛素化活性和PLPRO抑制可诱导病毒感染细胞产生干扰素,这应该导致对病毒的免疫反应增强。因此,从SCOV-2中对PLPRO的开发抑制剂非常感兴趣。14,20