摘要:最近,混合储能系统(HESS)的吸引力在多个应用领域中一直在增长,例如充电站,电网服务和微电网。hesss由两个或多个单个单一存储系统(ESS)的集成,以结合每个ESS的好处并改善整体系统性能,例如效率和寿命。关于HESS的最新研究主要集中在电源管理和不同ESS之间的耦合,而对特定类型的ESS而没有特别兴趣。在过去的几十年中,氧化还原流量电池(RFB)由于其吸引人的功能而受到了显着关注,尤其是对于固定存储应用,并且杂交可以改善有关短期持续时间和峰值功率可用性的某些特征。本文介绍的是基于RFB的HESS的主要概念的全面概述。从简短的描述和针对与RFB混合杂交的常见电化学存储技术的关键性能指标(KPI)的规范开始,HESS是基于面向电池的和面向应用程序的KPI进行了分类的。此外,通过数值模拟提出并评估了包括RFB和SuperCapacitor(SC)组合的HESS的最佳耦合结构。最后,对能源管理系统(EMS)进行了深入研究。提供了EMS以及可能的应用程序场景的一般结构,以识别常用的控制和优化参数。因此,将面向系统和面向应用程序的参数的分化应用于文献数据。之后,讨论了最新的EMS优化技术。作为最佳EMS的特征是对系统的未来行为的预测以及合适的控制技术的使用,对先前实施的EMS预测算法和控制技术进行了详细分析。这项研究总结了RFB的电杂交的关键方面和挑战,因此对新需要的优化和控制算法给出了未来的观点。
摘要:最近,混合储能系统 (HESS) 在充电站、电网服务和微电网等多个应用领域的吸引力日益增长。HESS 由两个或多个单个储能系统 (ESS) 集成而成,以结合每个 ESS 的优势并提高整体系统性能,例如效率和使用寿命。最近对 HESS 的研究主要集中在不同 ESS 之间的电源管理和耦合上,而对特定类型的 ESS 没有特别的兴趣。在过去的几十年里,氧化还原液流电池 (RFB) 因其吸引人的特性而备受关注,尤其是在固定存储应用中,混合可以改善某些短期持续时间和峰值功率可用性特性。本文全面概述了基于 RFB 的 HESS 的主要概念。首先简要描述并指定适用于与 RFB 混合的常见电化学存储技术的关键性能指标 (KPI),然后根据面向电池和面向应用的 KPI 对 HESS 进行分类。此外,提出了一种由 RFB 和超级电容器 (SC) 组合而成的 HESS 最佳耦合架构,并通过数值模拟对其进行了评估。最后,对能源管理系统 (EMS) 进行了深入研究。提供了 EMS 的一般结构以及可能的应用场景,以确定常用的控制和优化参数。因此,将面向系统和面向应用的参数的区分应用于文献数据。之后,讨论了最先进的 EMS 优化技术。由于最佳 EMS 的特点是预测系统的未来行为并使用合适的控制技术,因此对以前实施的 EMS 预测算法和控制技术进行了详细分析。该研究总结了RFB电混合的关键方面和挑战,从而为管理系统新需要的优化和控制算法提供了未来前景。
背景:为了大幅减少温室气体排放,有必要为电网开发下一代氧化还原液流电池 (RFB),使可再生能源在 2050 年前成为主要能源。目标:开发不依赖金属的储能材料,实现全有机、大容量、环保的 RFB。研发目标:研究与有机聚合物的高速率、高密度充电和离子存储相关的双稳态概念,并为有机 RFB 创造创新的电解质解决方案。
摘要:氧化还原流量电池(RFB)作为有希望的电化学能源储能技术引起了极大的关注,提供了各种优势,例如网格尺度的电力生产,具有可变的间歇性发电,与金属离子电池相比,安全性提高了安全性,脱离能源和电力密度和电力密度和简化的制造工艺。在此审查中,我们专注于有机,非水氧化还原流量电池。具体来说,我们解决了与可靠的氧化还原活性有机化合物的设计和合成有关的最新进展以及主要挑战。对广泛的氧化还原活性分子的合成和表征进行了广泛的研究,特别集中在诸如奎因酮,硝基二羟基自由基,二键二苯甲酸酯,苯丙嗪和势噻嗪和notholotes等posolytes的衍生物上,例如Violiden和pyridiums。我们探讨了参考文献中记录的各种官能团的掺入,旨在增强氧化还原活性分子的中性和自由基状态的化学和电化学稳定性以及溶解度。此外,我们还对这些氧化还原活性分子所表现出的细胞循环性能进行了全面评估。
摘要随着间歇性可再生能源的升级利用,对耐用和强大的能源存储系统的需求增加了以确保稳定的电力供应。氧化还原流量(RFB)已受到越来越多的关注,作为网格应用的有前途的能力存储技术。然而,他们的广泛市场渗透仍然受到许多挑战的阻碍,例如高资本成本和劣等的长期稳定。在这项工作中,设计和制造了全瓦纳邦和铁奇异RFB系统的优点,钒 - 铬RFB(v/cr rfb)。该提出的系统具有1.41 V的高理论电压,同时通过使用便宜的铬作为反应性物种来实现成本效益。在实验上,该系统在50 c时达到了超过900 mW cm 2的峰值密度,并且对于50个周期的稳定性能,其能量效率超过87%,将该系统作为大型能源存储的有前途的候选者。
可持续能源产生的份额不断增长,并将继续导致效果储能系统的重要性显着增加,因为它变得越来越有必要弥补能够在电网中弥补可再生能源的波动。1,2在大量可能的技术中,一种有希望的电化学能量系统是氧化还原流量电池(RFB),例如全泡氧化还原流量电池(AVRFB)。3,4,在两个半细胞中,不同的氧化态种类用作氧化还原对。这比RFB具有一个显着的优势,而RFB在每个半细胞中采用了不同的金属氧化还原对,因为通过膜对钒物种的交叉污染不会导致AVRFBS的永久损失,从而导致系统的寿命较短。5,6 AVRFB的原理如图所示 1。 电池的两个半细胞通过质子交换膜(PEM)隔开,该质子交换膜(PEM)促进了通过质子传递的电荷平衡,而电气导体可确保电子的流动。 应该注意的是,也可以使用阴离子交换膜;但是,PEM是最常用的膜。 7–9因此,阴离子交换膜将5,6 AVRFB的原理如图1。电池的两个半细胞通过质子交换膜(PEM)隔开,该质子交换膜(PEM)促进了通过质子传递的电荷平衡,而电气导体可确保电子的流动。应该注意的是,也可以使用阴离子交换膜;但是,PEM是最常用的膜。7–9因此,阴离子交换膜将
设备,RFB电解池很容易访问,可实现电解质缩放,维护和潜在的新氧化还原夫妻的交换(图1 A)。尽管具有优势,但对于许多新兴的网格应用来说,当前的RFB迭代被认为太昂贵了,[1,4,5]激励研究改进的电解质形式,[6,7]分离技术,[8-10]运营策略,[11],[11]和材料设计。[12]特别是,增加的功率密度可以实现更紧凑的有效反应堆,可以满足运行需求,从而降低电化学堆栈尺寸和成本。在反应堆内,多孔碳电极支持几个重要功能,包括导电和热量,从而进行氧化还原反应发生的表面积,通过反应器分布电解质并调节操作压力下降。[13]因此,室内和微结构特性会影响电化学和流体动力学的表现,最终影响系统效率和成本。[14]从历史上看,常规的RFB电极已成为纤维垫,源自聚丙烯硝基烯(PAN)前体,并组装成连贯的结构,包括纸,布或毡。[15]由于其渗透性(K≈10-10-10至10-12 m 2),(电)化学稳定性和电子电导率,此类格式对于对流驱动的电化学技术有效。每个独特的纤维排列都会产生具有特质的构造
氧化还原电池(RFB)是一种适合能源密集型电网存储的新兴电化学技术,但需要进一步降低成本来进行广泛部署。通过改进组成部分的设计和工程来克服细胞性能限制,代表了降低系统成本的有希望的途径。特定相关性但在研究中有限的是多孔碳电极,其表面组成和微观结构会影响细胞行为的多个方面。在这里,我们系统地研究了基于相同碳纤维的编织碳布电极,但分为不同厚度的不同编织模式(普通的,8个小缎,2×2篮),以识别结构 - 功能关系和可推广的描述符。我们首先使用一套分析方法来评估电极的物理特性,以量化结构特征,可访问的表面积和渗透率。然后,我们研究诊断流细胞配置中的电化学性能,通过极化和阻抗分析来阐明电阻损失,并通过限制电流测量值估算传质系数。最后,我们结合了这些发现,以在相关的尺寸和无量纲数量之间发展幂定律关系,并计算广泛的传质系数。这些研究揭示了电极的物理形态与其电化学和氢气性能之间的细微关系 - 表明普通的编织模式提供了这些属性的最佳组合。[doi:10.1115/1.4046661]更普遍地,本研究提供了物理数据和实验见解,这些见解可支持使用编织材料平台开发专用电极。
