结果:两种物种之间的土壤特性和根部特征存在显着差异,其中有土壤水含量(SWC)和根际和散装土壤中的土壤有机碳(SOC)(p <0.05)。虽然根部渗出液的代谢物分类相似,但它们的成分变化,而萜类化合物是主要的差分代谢物。土壤微生物结构和多样性也表现出显着差异,网络中具有不同的关键物种,并且主要与氮和碳周期有关的差异功能过程。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。 HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。
CHH米高梅大学生物技术米高梅大学。 Sambhaji Nager 431001,印度。 摘要:PGPR植物生长促进根瘤菌是最有益的细菌菌株,可通过直接和间接机制增强植物的生长和生物控制。 PGPR被确定为有效的微生物作为植物生长的生物肥料。 因此,进行了本研究以分离并表征从根际土壤中的PGPR。 从土壤样品中分离出总数十个分离株,并通过不同的表征技术来表征。 在本研究中,十个分离物中的两个10 -5 F1和10 -5 F3显示了IAA高产生,显示了Pikovskaya琼脂中磷酸盐溶解活性,几乎所有分离株在过氧化氢酶测试中均为阳性,并显示出针对曲霉菌物种的抗真菌活性。 索引项 - 根瘤菌,磷酸盐溶解,抗真菌活性。CHH米高梅大学生物技术米高梅大学。Sambhaji Nager 431001,印度。摘要:PGPR植物生长促进根瘤菌是最有益的细菌菌株,可通过直接和间接机制增强植物的生长和生物控制。PGPR被确定为有效的微生物作为植物生长的生物肥料。因此,进行了本研究以分离并表征从根际土壤中的PGPR。从土壤样品中分离出总数十个分离株,并通过不同的表征技术来表征。在本研究中,十个分离物中的两个10 -5 F1和10 -5 F3显示了IAA高产生,显示了Pikovskaya琼脂中磷酸盐溶解活性,几乎所有分离株在过氧化氢酶测试中均为阳性,并显示出针对曲霉菌物种的抗真菌活性。索引项 - 根瘤菌,磷酸盐溶解,抗真菌活性。
我们对这一特刊的兴趣源于以下事实:关于基因组学和分子生物学对森林真菌生活方式的机械理解及其相互作用的机械理解的影响很少,致病性,腐病性,腐烂性,内植血,相互性)与与森林生态系统的直接相关。最近的新技术进步和生物信息学方面已极大地促进了这一领域的进步。数百种真菌物种的基因组序列的可用性占据了多种生态位,代表各种分类群体为比较基因组学分析提供了无与伦比的机会。同时,下一代测序(NGS)和转录组学的应用促进了在林木和土壤微生物组上的大量数据及其分子相互作用的积累。对不同森林组织(内pophere,根际,浮游生石)定植的真菌组群落的研究也很感兴趣。
-glomalin,EPS和生物膜改善了土壤聚集的稳定性并增加了根际中的水分,在干旱1,2下增加了植物生存和生物量,以及在盐胁迫下发芽3。- 细菌生物膜减少了植物组织中砷的摄取和砷的积累,并改善了植物生长4。植物激素的分泌-Rhizobial Gearins促进了Rubisco和低分子量的渗透量产生,增加了干旱耐受性5,并促进了不定的根生长以抵消洪水6。- 细菌细胞分裂素增加了相对的水含量,叶水的潜力以及干旱下的根渗出液的产生。- 末期真菌gberellins调节植物激素,导致盐和干旱胁迫下的营养同化较高。8。- 细菌脱落酸增强了脯氨酸水平以及光合作用和光保护色素,减少了在干旱下损失的植物水9。- 细菌中的ACC-脱氨基酶基因增加了根部伸长和病原体耐药性10。
作为化肥的环保替代品,生物量化剂在寻求可持续农业方面具有重要意义。尽管存在挑战,例如监管障碍和技术复杂性,但该领域的机会是巨大的。了解根际工程可以提高生物肥料的效率,从而确保它们提供最大的作物益处。生物监管剂的遗传工程为特定的作物需求量身定制生物量化剂提供了一种途径,从而有可能提高其有效性。多特征,多应变和多营养微生物配方有可能彻底改变生物肥料市场,从而实现定制的解决方案,以满足一系列农业需求。这些创新得到了市场动态和纳米技术的整合的补充,这可以进一步提高生物培训的性能和覆盖范围。这样的机会表明生物肥料商业化的前途光明,可持续农业可以从先进的配方中受益,并提高对土壤植物相互作用的了解。BioFertilizers的前景很有希望,为滋养世界不断增长的人口提供了一种更可持续和环保的方法。
根瘤菌是土壤细菌,可以与豆科植物建立氮固定共生。作为水平传播的共生体,根瘤菌的生命周期包括土壤中的自由生活阶段和植物相关的共生阶段。在整个生命周期中,根瘤菌暴露于与它们相互作用的无数其他微生物中,从而调节其拟合度和共生性能。在这篇综述中,我们描述了根茎与其他微生物之间相互作用的多样性,这些微生物在根际,结节开始和结节中可能发生。这些根瘤菌 - 微生物相互作用中的某些是间接的,并且发生某些微生物的存在以一种以根瘤菌的方式反馈的植物生理学的存在。我们进一步描述了这些相互作用如何对根瘤菌施加显着的选择性压力并修改其进化轨迹。对复杂的生物环境中根茎的生态进化动力学进行更广泛的研究可能会揭示出这种认真的共生相互作用的引人入胜的新方面,并为未来的农艺应用提供了关键的知识。
根瘤菌是土壤细菌,可以与豆科植物建立氮固定共生。作为水平传播的共生体,根瘤菌的生命周期包括土壤中的自由生活阶段和植物相关的共生阶段。在整个生命周期中,根瘤菌暴露于与它们相互作用的无数其他微生物中,从而调节其拟合度和共生性能。在这篇综述中,我们描述了根茎与其他微生物之间相互作用的多样性,这些微生物在根际,结节开始和结节中可能发生。这些根瘤菌 - 微生物相互作用中的某些是间接的,并且发生某些微生物的存在以一种以根瘤菌的方式反馈的植物生理学的存在。我们进一步描述了这些相互作用如何对根瘤菌施加显着的选择性压力并修改其进化轨迹。对复杂的生物环境中根茎的生态进化动力学进行更广泛的研究可能会揭示出这种认真的共生相互作用的引人入胜的新方面,并为未来的农艺应用提供了关键的知识。
吲哚乙酸(IAA)的产生是根际细菌的主要资产,可刺激和增强植物的生长。目前的工作涉及分离和鉴定从石榴酸盐,番石榴和Amla农场收集的根际土壤中产生细菌的吲哚乙酸。在十种吲哚乙酸产生分离株中,选择了两个作为有效的生产者。光谱分析,这表明在37°C下孵育72小时后,分离的细菌在孵育72小时后产生了最大浓度IAA。使用标准IAA曲线测量浓度,并通过AA2获得最大浓度。随后,通过POT分析测试了对植物生长的影响。用AA2分离物进行发芽的豌豆种子的体外处理表现出比对照更好的结果。总而言之,研究表明,IAA产生细菌是促进植物生长的有效接种剂。
多重有机Magik(OM)是从不同土壤类型中分离出的实验室中最有效的天然微生物的最有效的本地菌株的组合。它含有菌丝,孢子,生物酶,代谢物,具有生长促进和抗真菌抗菌特性。微生物共同有助于植物摄入营养,可保护病原体,有助于通过将其在根际施用到土壤中的根际中的相互作用来更好地回收养分。有机Magik(OM)中多种真菌和细菌的多种菌株分解了植物残留物中的复杂营养素,例如稻草,小麦稻草/矮菜,纤维,coir等。 div> < div>很难分解。释放碳,氮,磷和其他对植物至关重要的重要营养素,并使植物容易获得。有机Magik(OM)通过释放酶和分解的农作物残留物中的腐殖质来分解植物残留物,将有助于繁殖土壤中有益的微生物。
植物与微生物之间相互作用的高度复杂性促使植物生理学家和微生物学家使用简单的模型,即无菌或亚无菌水培植物培养物或纯微生物培养物。这类研究过去和现在都非常有成效,但它们往往掩盖了自然界中相互作用的作用。实际上,在土壤中生长的植物根系从来都不是无菌的,而是总是被大量可能具有强烈活性的微生物包围或侵入。因此,植物科学家不应忽视与植物根系相关的微生物对植物代谢的影响。另一方面,与植物根系相关的微生物种群不能独立于植物进行研究。因此,根系微生物种群必须被视为系统或关联中的一个组成部分,该系统或关联可称为植物-微生物系统。这种概念在处理不同类别的共生体(根瘤与根瘤菌共生、根瘤与放线菌类生物共生、外生和内生菌根、根际系统、根病原体复合体等)时得到了广泛的应用。