从泰国 Roi Et 省雨养有机稻田土壤样本中分离出一株革兰氏阳性菌,命名为菌株 ORF15-23。据报道,该菌株能产生吲哚-3-乙酸和 2-乙酰基-1-吡咯烷 (2AP) 化合物,溶解钾长石并促进水稻幼苗生长。基因组测序采用 Illumina MiSeq 平台进行。菌株 ORF15-23 的基因组草图长度为 2,562,005 bp,包含 1677 个蛋白质编码序列,平均 G + C 含量为 72.97 mol.%。系统基因组树支持将菌株 ORF15-23 归为微球菌属的成员。平均核苷酸同一性 (ANIb) 值比较显示,菌株 ORF15-23 与 M. yunnanensis DSM 21948 T 基因组的同一性为 96.95 %。M. yunnanesis ORF15-23 的基因组草图序列已存入 DDBJ/EMBL/GenBank 数据库,登录号为 JAZDRZ0 0 0 0 0 0 0 0 0。该基因组序列数据为分类学研究提供了有价值的信息
INTRODUCTION Rhizosphere bacteria that positively influence plant growth and productivity of commercially important crops are commonly referred to as Plant Growth Promoting Rhizobacteria (PGPR) and include bacteria of the genera Azotobacter, Azospirillum , Arthrobacter, Bacillus, Agrobacterium, Rhizobium, Flavobacterium, Burkholderia, Enterobacter,克莱伯斯ella,假单胞菌,xanthomonas和serratia。根渗出液的分泌有助于调节微生物动力学及其与植物的相互作用,进而在促进植物生长中起着重要作用。此外,根际中的这种共生相关性还赋予对由真菌,细菌和病毒病原体引起的各种疾病的保护。这些细菌直接通过使用刺激性生长素和细菌的组合或通过刺激性生长素和细菌的形式组成的刺激性的生长素,gibberellins和componial compan和compoa,并通过刺激性的生产力和细菌来通过刺激性的生长蛋白和胞质的组合来直接影响植物的生长和分泌。 N.I.K.al-Barhawee和F.A.al-Wazzan。2025。从新分子表征的根瘤菌菌株中产生吲哚-3-乙酸的估计。农业科学全球创新杂志13:85-94。[2024年9月2日收到; 2024年10月6日接受;出版于2025年1月1日]
Every minute, the world's population grows, and in order to feed them, crop output and agricultural productivity must be improved by adding crucial microorganisms that boost plant yields in various ways through nitrogen fixation, the secretion of both plant growth regulators and 1-aminocyclopropane 1-carboxylate deaminase, as well as some antimicrobial agents.最近已使用许多内生细菌来增加植物的产量,除了减少盐胁迫外,还使用了农业产量。许多科学家已经努力澄清和理解细菌促进植物生长和生产的过程。一种称为1-氨基丙烷-1-羧酸盐(ACC)脱氨酶的重要物质是由几种细菌,植物和真菌产生的,可在不同的环境压力下生长的植物中降低乙烯水平。气态激素乙烯(C 2 H 4)在植物组织中与前体ACC合成,并且在植物中具有许多生化作用,例如细胞分化和组织发育,除水果成熟和形成绿气蛋白和燃料蛋白和挥发性化合物外,除了水果成熟和形成外,除了水果成熟和形成外。因此,这种关键酶在与细菌的正相互作用期间在植物中具有影响力的作用,这些酶因生长素的产生而增加植物生长,并保护植物免受不同的环境压力,例如干旱,高盐,枯萎,高水平的重金属,具有农药的污染物和微生物病原体感染。不同的细菌属是高度ACC脱氨酶产生剂,这些细菌支持植物的生长和农业过程。总而言之,细菌可以替代各种环境良性方法中的化学物质,以提高土壤生育能力和植物生产力。然而,在暗示它们在现场的广泛使用之前,需要进行大量研究以确定这些细菌的功效。
- N为31.94和29.58%,可用的磷(AP 53.21和27.19%),RR和ZZ中可用的钾(AK 42.43和11.92%)的可用钾(AK 42.43和11.92%)的含量超过RZ和ZR。用相同品种(RR,ZZ)返回的稻草可显着提高根际微生物群落的丰富性和多样性。品种Z9(处理Z)的微生物多样性大于品种ROC22(处理R)的微生物多样性。在根际中,有益微生物的相对丰度Gemmatimonadaceae,Trechispora,链霉菌,Chaetomium等在稻草返回后增加。甘蔗稻草增强了假单胞菌和曲霉的活性,从而提高了甘蔗的产量。Z9成熟时的Z9根际微生物群落的丰富性和多样性增加。在ROC22中,细菌多样性增加,真菌多样性减少。这些发现共同表明,Z9稻草返回的影响比ROC22对根际微生物的土壤功能和甘蔗产生的活性更有益。
*相应的作者:Amir H. Ahkami amir.ahkami@pnnl.gov,odeta qafoku odeta.qafoku@pnnnl.gov。作者的贡献:Amir H. Ahkami:概念化了这项工作,撰写了摘要,简介和第5.1节,用于监测根际中的营养和化学交换的第5.1节,促进了图1,2和7的发展,并审查并编辑了手稿。odeta Qafoku:概念化了工作;撰写介绍和第2节;综合成像和生化方法论,以解决时空中的根际过程;促进了图1,2和7的发展,并审查并编辑了手稿。tamas varga:写下基于图像的植物土壤相互作用的基于图像的建模的第4.1-4.2节:根际多尺度测量和建模;有助于开发图1和7。Tiina Roose:写第4节,基于图像的植物土壤相互作用的建模:根际多尺度测量和建模;有助于开发图7。Pubudu Handakumbura:撰写了第3.2节的构建环境,用于实验室,以对根际过程进行现场调查;有助于开发图2。Jayde A. Aufrecht:撰写了第3.1节的构建环境,用于实验室,以对根际过程进行现场调查;有助于开发图2。Arunima Bhattacharjee:审查和编辑第3.2节Yi Lu:撰写了第5.2节,《生物传感器》,用于监测根际中的营养和化学交换的生物传感器;开发图3。Quanbing Mou:撰写了第5.2节,《生物传感器》,用于监测根际中的养分和化学交换;开发图3。Zoe Cardon:写了第6节,对田间根际化学梯度的分布和动力学的测量;开发图4。Yuxin Wu:写了第7节,跨尺度的根际相互作用的检测:复杂系统中的升级挑战;写了《陆地生物圈命运》第8.2节:将植物土壤 - 微生物相互作用缩放到景观和世界上;开发图5。Joshua B. Fisher:书面第8节,陆地生物圈的命运:将植物土壤 - 微生物相互作用缩放到景观和世界上;开发图6。詹姆斯·J·莫兰(James J.
1重返发展,强大的GIC,国家创新研究所是Nug(NIA),AV。1981年莫利纳,利马15024,秘鲁; genomica@inia.gob.or(R.E.); andovals@gmail.com(t.p。); auristel.reynos@gmail.com(A.R.)2 Agronoma的教职员工,国家普遍农业(UNALM),AV。Molina S/N,Lima 15024,秘鲁; 3农业学院和农业社会,来自亚马逊门多萨(UNTRM)的全国普遍调查形象,Cl。URCO 342,01001,秘鲁4参与教师IS,全国通用世界(UNAB),AV。威尔士376,利马15169,秘鲁; garone@un.edu.or。); Carlos.A);电话: +51-9556-48901(R.C.); +51-9862-88181(C.I.A。)†另一个组装造成了这项工作。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
摘要:在Panax Notoginseng的连续种植中,根际土壤中的致病真菌增加并感染了Panax Notoginseng的根,导致产量降低。这是一个紧迫的问题,需要解决,以有效克服与Panax Notoginseng的连续种植相关的障碍。先前的研究表明,枯草芽孢杆菌抑制了Panax Notoginseng根际中的致病真菌,但抑制作用不稳定。因此,我们希望引入生物炭,以帮助枯草芽孢杆菌在土壤中定植。在实验中,对Panax Notoginseng种植了5年的田地进行了翻新,并同时混合了生物炭。将应用的生物炭量设置为四个水平(B0,10 kg·Hm -2; b1; b1,80 kg·Hm -2; b2; b2,110 kg·hm -2; b3,140 kg·hm -hm -hm -2)和二级生物杆菌的生物学剂,将三个水平设置为三个水平(C1,10 kg)。 2; C3,25 kg·Hm -2)。使用了完整的组合实验和空白对照组(CK)。实验结果表明,整体蛋白酶在门水平下降低了0.86%〜65.68%。基本肌cota增长-73.81%〜138.47%,而Mortierellomy-Cota增加了-51.27%〜403.20%。在属水平上,Mortierella升高-10.29%〜855.44%,镰刀菌降低了35.02%〜86.79%,而Ilyonectria则增加了-93.60%〜680.62%。镰刀菌主要引起急性细菌枯萎的根腐,而伊利诺克里亚主要会导致黄色腐烂。good_coverage指数均高于0.99。在不同的治疗方法下,香农指数增加-6.77%〜62.18%,CHAO1指数增加了-12.07%〜95.77%,Simpson指数增加了-7.31%〜14.98%,ACE指数增加了-11.75%〜96.75%〜96.12%。随机森林分析的结果表明,Ilyonectria,pyrenochaeta和Xenopolyscytalum是土壤中最重要的三种最重要的物种,弯曲曲霉的值分别为2.70、2.50和2.45。fusarium排名第五,其弯曲的值为2.28。实验结果表明,B2C2治疗对镰刀菌具有最佳的抑制作用,并且在B2C2处理下,Panax Notoginseng Rothosphere土壤中镰刀菌的相对丰度降低了86.79%。 B1C2治疗对伊利诺克里亚的抑制作用最佳,而在B1C2处理下,Panax Notoginseng Rothizosphere土壤中伊甘元的相对丰度降低了93.60%。因此,如果我们想用急性摩尔斯托尼亚卵巢根腐烂改善土壤,则应使用B2C2处理来改善土壤环境;如果我们想通过黄色腐烂疾病改善土壤,我们应该使用B1C2处理来改善土壤环境。
通讯电子邮件:bahauddeen.salisu@umyu.edu.ng引言化学农药和肥料对农业产量至关重要,但是它们对环境,植物,动物和人类健康的有害影响已导致对环保的植物保护植物保护(Patel等。,2014年)。生物肥料由从植物根或土壤中提取的活微生物组成(Aggani,2013年),它在化学肥料的替代品中广受欢迎。它们通过增加氮的可用性来降低农作物的生产成本,提高生长和产量,并促进生长促进性物质(如生长素,细胞分裂素和吉伯林林)的生产(Bhattacharjee和Dey,2014年)。含有有益微生物的生物肥料,而不是合成化学物质,而是通过提供必需的养分来改善植物的生长,同时保持环境健康和土壤生产率(Singh等,2011; Verma等,2017)。他们
气候因子和根际微生物群的变化导致植物在不利的环境条件下调整其代谢策略以生存。植物代谢产物的变化可以介导农作物的生长和发育,并与植物根际的根际微生物相互作用。了解环境因素,根际菌群和烟草代谢产物之间的相互作用,是通过在中国尤恩南的四个典型代表性烟草种植地点使用综合的元基因组和代谢组策略进行了一项研究。结果表明,农艺和生化特征受到温度,降水(PREP),土壤pH和高度的显着影响。相关分析显示,温度与叶片的长度,宽度和面积有显着的正相关性,而PREP与植物高度和有效的叶子数相关。此外,烘焙叶的总糖和还原的糖含量明显更高,而在现场烟叶中,总氮和总生物碱水平较低,而Prep较低。与其他三个地点相比,在Chuxiong(CX)的不同丰富的代谢物(DMS)中,总共770个代谢产物被检测到,其中二次代谢物在两种叶子和根中都更丰富。共有8479种,属于2,094个属,有420个单独的垃圾箱(包括13个高质量的垃圾箱),它们被检测到851,209个CDSS。微生物的门水平,例如euryarchaeota,粘菌球和脱氧核糖核,在CX部位显着富集,而假胞植物在高温位点富集了良好的prep。相关分析表明,低prep位点样品中的代谢化合物与二氨基丁酸,nissabacter,nissabacter,alloactinosynnema和catellatospora和catellatospora和catellatospora呈正相关,并与niculibibacterium,Noviherbasterium,Noviherbasuspirillim和Limnobrim s himnicibrim and Novibasterium s himnicibrim seriaterts re招募。根际诱导的二氨基丁基菌,尼萨拉克菌,同骨促和catellatospora