本文档中包含的任何前瞻性陈述都涉及主观判断和分析,并受到不确定性,风险和意外事件的约束,其中许多都超出了控制,甚至可能遇到的未知数。尤其是在本文档之日起说的,他们承担了遭遇策略的成功,并且受到重要的监管,商业,竞争,竞争和经济不确定性和风险。实际未来事件可能与前瞻性陈述以及前瞻性语句所基于的假设有很大不同。该文档的收件人(“收件人”)被告知不要对这种前瞻性陈述不依赖。
2024 年 3 月 18 日,科学委员会将在欧洲研究委员会的面板上提出修改方案和整合系统的建议,介绍欧洲研究理事会的主管部门、应用程序和框架国家研究委员会的主要任务是建立 ERC 系统。
摘要 表面等离子体共振 (SPR) 传感器对于生物传感和环境监测等各种应用领域的高灵敏度、无标记检测至关重要。本研究使用严格耦合波分析 (RCWA) 研究了基于衍射光栅的 SPR 传感器的灵敏度和性能。分析重点关注由铜、金和银组成的单层和双层金属结构。结果表明,单层银传感器的灵敏度最高,为 169.37°/RIU,其次是金和铜,灵敏度分别为 168.4°/RIU 和 167.9°/RIU。此外,为了提高稳定性和可靠性,引入了双层配置,将一种金属的保护涂层覆盖在另一种金属上。在双层配置中,银-铜表现出最高的灵敏度,为 175°/RIU,其次是银-金,灵敏度为 173.25°/RIU,金-铜的灵敏度为 168.5°/RIU。这项研究证实了双金属 SPR 传感器实现卓越灵敏度和稳定性的潜力,突出了其在先进检测系统中的适用性。对材料特性和传感器性能之间相互作用的新见解为设计下一代等离子体传感器提供了路线图。
摘要 - 在这项工作中,提出了嵌入矩形开放通道(ROC)的表面等离激子共振(SPR)等离子光子晶体纤维(PCF)生物传感器,从而实现了健康和肿瘤的脑组织之间的精确检测和歧视。健康和肿瘤组织被认为是液体组织,每个组织都有其自身独特的折射率(RI)。将ROC涂有金(AU)以生成表面等离子体。为了促进足够的生物分子,薄的Ti 3 C 2 Tx-Mxene层在金上官能化。在ROC表面上涂有薄TIO 2层,以强烈保留Au纳米颗粒,以确保提高感应性能。健康,癌性和肿瘤组织样品表现出独特的共振波长,可以通过测量各自共振波长的变化来诊断它们。评估了基本的性能参数,包括灵敏度,最大(FWHM)和功绩(FOM)的全宽度。对正常组织和异常组织的计算敏感性,即灰质,脑脊液和少突胶质瘤的敏感性为12352.94 nm/riU,2030.45 nm/riU,以及672.26 nm/riu,相对于白色物质和固体脑的壁架测量。,对于肿瘤组织(癌和肿瘤),例如胶质母细胞瘤,淋巴瘤和转移,敏感性为800 nm/riU,774.9 nm/riU和643.26 nm/riU,与低级Glioma(Benignign)一起测量。此外,拟议的生物传感器的分辨率(R)范围为𝟏。𝟐𝟓×𝟏𝟎−𝟒至𝟖。𝟎𝟗×𝟏𝟎 -𝟔riU,最大FOM为126.05 riU -1。因此,该生物传感器有望在检测肿瘤和癌症组织方面表现出色,使其成为推进医学诊断的有前途的候选人。
我们提出了一个血浆传感器(三合一),用于测量不同的蔗糖浓度。由于折射率随浓度而变化很小,因此我们设计了一个三合一的传感器,以覆盖从0-80%的Brix度量覆盖所有浓度。提出的传感器通过折射率(低,中和高)范围运行。它们由kretschmann配置后的半球形棱镜和一层金组成。在低区域工作的传感器的灵敏度在22.95至4.64riu -1之间,分辨率在4.3x10 -4至8.7 x10 -5 riU之间,用于中区域的敏感性在4.3x10 -4至8.7 x10 -5 riU之间的敏感性在21.05到21.05至3.89riu -1之间,并且在5.1x10 -4和9.4.4和9.5x10 -5 riU之间的敏感性之间。在19.60到4.64riu -1之间,分辨率为4.3x10-
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
摘要:由光子晶体纤维(PCF)组成的表面等离子体共振(SPR)传感器设计用于检测低浓度的液体。出色的传感特性归因于表面等离子体偏振子(SPP)模式的分散点(DTP)的灵敏度增强。传感器由两个相同且结构上简单的D形PCF以及与分析物直接接触在抛光表面上的等离子薄膜组成。折射率(RI)的变化导致退化等离子体峰分裂,从而通过测量峰分离来监测分析物浓度变化。在1.328 RIU和1.33 RIU之间,传感器的超高灵敏度为129,800 nm/riU,比未敏化的单个D形结构高37.22倍。与在覆层模式DTP附近运行的纤维光栅传感器相比,剪接的双D形PCF仍然具有高度高的机械强度。此外,可以通过调节缝隙宽度来更改传感器的RI检测范围。在0g/l至100 g/l的氯化钠浓度范围内,平均敏感性为4.38 nm/g·l -1,在0g/l至20 g/l的血红蛋白浓度范围内,0g/L至100 g/l和20.85 nm/g·l -1。我们的结果表明,基于PCFS的SPR传感器在多种应用中具有较大潜力,尤其是生物化学,因为它具有出色的灵敏度,结构性的简单性和可调节的检测范围。
摘要:本文结合数值分析和实验验证,研究了基于氮化硅 (Si3N4) 平台的脊形波导的波长相关灵敏度。在第一部分中,详细分析了 Si3N4 脊形波导的模式特性,重点分析了有效折射率 (neff)、衰减场比 (EFR) 和传播损耗 (αprop)。这些参数对于理解引导光与周围介质的相互作用以及优化用于传感应用的波导设计至关重要。在第二部分中,通过实验证明了基于 Si3N4 波导的赛道环谐振器 (RTRR) 的波长相关灵敏度。结果表明,随着波长从 1520 nm 移至 1600 nm,RTRR 的灵敏度明显提高,从 116.3 nm/RIU 上升到 143.3 nm/RIU。这一趋势为设备在较长波长下的增强性能提供了宝贵的见解,强调了其在需要在该光谱范围内高灵敏度的应用方面的潜力。
摘要 基于 Kretschmann 的表面等离子体共振 (K-SPR) 传感器采用等离子体金 (Au) 层上的多层石墨烯和二硫化钼 (MoS 2 ) 结构进行乙醇检测。在这种配置中,最小反射率与 SPR 角度的 SPR 光谱用于确定灵敏度、检测精度和质量因数作为主要品质因数 (FOM)。石墨烯和 MoS 2 均用作混合检测层,以使用有限差分时间域 (FDTD) 增强乙醇传感性能。多层石墨烯/Au 和 MoS 2 /Au 传感器在 785 nm 光波长下的最大灵敏度分别为 192.03 ◦ /RIU 和 153.25 ◦ /RIU。在使用 K-SPR 技术进行材料表征方面,在金上化学气相沉积 (CVD) 生长的石墨烯厚度为 1.17 nm,在光波长为 670 nm 和 785 nm 时实折射率和虚折射率分别为 2.85、0.74 和 3.1、1.19。
这项研究介绍了用于Covid-19检测的生物传感器的设计和分析,将石墨烯元面积与金,银和GST材料整合在一起。所提出的传感器架构将平方环谐振器与圆环谐振器结合在一起,并通过红外制度中的Comsol多物理模拟进行了优化。传感器表现出非凡的性能特征,在初级检测带(4.2-4.6μm)中的吸收值超过99.5%,次级带(5.0-5.5μm)中的吸收值约为97.5%。该设备表现出高灵敏度(4000 nm/riU),检测极限为0.078,优点为16.000riu⁻时,当利用晶体GST作为底物材料时。通过使用XGBoost回归的机器学习优化,传感器的性能得到了进一步提高,从而在各种操作参数之间实现了预测和实验值之间的完美相关性(R²= 100%)。双波段检测机制,结合了高级材料和机器学习优化的整合,为快速,无标签和高度敏感的COVID-19检测提供了有前途的平台。这项研究有助于开发用于病毒检测和疾病诊断的下一代生物传感技术。