核糖体 DNA (rDNA) 基因座含有数百个串联重复的核糖体 RNA 基因拷贝,这些基因是维持细胞生存所必需的。这种重复性使其极易因 rDNA 拷贝之间的染色单体内重组而导致拷贝数 (CN) 丢失,从而威胁到 rDNA 的多代维持。如何抵消这种威胁以避免谱系灭绝仍不清楚。在这里,我们表明 rDNA 特异性逆转录转座子 R2 对于恢复性 rDNA CN 扩增以维持果蝇雄性生殖系中的 rDNA 基因座至关重要。R2 的消耗导致 rDNA CN 维持缺陷,导致繁殖力在几代内下降并最终灭绝。我们发现,R2 核酸内切酶造成的双链 DNA 断裂(R2 的 rDNA 特异性逆转座的一个特征)会启动 rDNA CN 恢复过程,该过程依赖于 rDNA 拷贝处 DNA 断裂的同源性依赖性修复。这项研究表明,活性逆转座子为其宿主提供了必不可少的功能,这与转座因子完全自私的名声相反。这些发现表明,有利于宿主适应性可能是转座因子抵消其对宿主威胁的有效选择优势,这可能有助于逆转座子在整个分类群中广泛成功。
摘要 SARS-CoV-2 非结构蛋白 1 (Nsp1) 包含一个 N 端结构域和由短连接区连接的 C 端螺旋。SARS-CoV-2 的 Nsp1 (Nsp1-C-ter) 的 C 端螺旋与 40S 核糖体亚基的 mRNA 进入通道结合并阻止 mRNA 进入,从而关闭宿主蛋白质合成。Nsp1 抑制宿主免疫功能,对病毒复制至关重要。因此,Nsp1 似乎是治疗的一个有吸引力的靶点。在本研究中,我们对美国食品药品监督管理局 (FDA) 批准的针对 Nsp1-C-ter 的药物进行了计算机筛选。在获得的最佳匹配中,孟鲁司特钠水合物与 Nsp1 结合的体外结合亲和力 (KD ) 为 10.8 ± 0.2 µM。在模拟运行中,它与 Nsp1-C-ter 形成稳定的复合物,结合能为 –95.8 ± 13.3 kJ/mol。孟鲁司特钠水合物还挽救了 Nsp1 在宿主蛋白质合成中的抑制作用,这通过萤火虫荧光素酶报告基因在细胞中的表达得到证明。重要的是,它显示出对 SARS-CoV-2 的抗病毒活性,并在表达 ACE2 的 HEK 细胞和 Vero-E6 细胞中降低了病毒复制。因此,我们建议以孟鲁司特钠水合物为先导分子,设计有效的抑制剂来帮助对抗 SARS-CoV-2 感染。
细胞资源在细菌蛋白质中的分布已通过现象学生长定律量化。在这里,我们描述了一种补充性的 RNA 组成细菌生长定律,该定律源于细胞资源在核糖体和三元复合物中的最佳分配。预测的 tRNA/rRNA 比率随生长速度下降与实验数据在定量上一致。它的调节似乎部分是通过染色体定位来实现的,因为 rRNA 基因通常比 tRNA 基因更靠近复制起点,因此在更快的生长速度下其基因剂量会越来越高。在大肠杆菌中,在最高生长速度下,基于染色体位置的 tRNA/rRNA 基因剂量比几乎与观察到的、理论上最佳的 tRNA/rRNA 表达比相同,这表明染色体排列已经进化到有利于这种条件下两种类型基因的最大转录。