COSMX™SMI和解码器探测器未提供和/或交付给德国联邦共和国,用于在德国联邦共和国中使用,用于检测细胞RNA,Messenger RNA,MicroRNA,MicroRNA,核糖体RNA及其任何组合的方法,用于在荧光中以荧光量的分析,以进行杂交的分析,以进行分析,以进行分析,以进行分析。 (哈佛大学)作为EP 2 794 928 B1的德国部分的所有者。未经哈佛大学(哈佛大学)的总统和研究员的同意,禁止检测细胞RNA,Messenger RNA,microRNA,核糖体RNA及其任何组合的用途。
摘要 针对细菌核糖体的药物在现代医学和兽医实践中被广泛用于治疗细菌感染和防止抗生素耐药性的传播。然而,大多数针对核糖体的药物研究仅限于少数模型生物。因此,我们不知道在模型细菌中观察到的核糖体药物结合位点是否像目前所暗示的那样在细菌中高度保守。在本研究中,我们使用一个简单但强大的计算流程来解决这个问题,该流程过滤掉罕见的变异和测序错误,以识别整个细菌生命树中核糖体药物结合位点的保守变化。这使我们能够评估来自 8,809 种细菌物种的 82 个细菌核糖体药物结合残基的保守性。对于这些残基中的每一个,我们追踪其在 40 多亿年的细菌历史中的进化。与核糖体药物结合残基高度保守的普遍看法相反,我们发现细菌门类在药物结合位点存在广泛的差异。此外,我们还发现,大约 10% 的细菌物种带有核糖体 RNA (rRNA) 替换,而这种替换此前仅在耐药细菌的临床分离株中观察到。总体而言,我们的工作表明,我们传统上将核糖体分为细菌和真核生物类型的方法过于简单且具有误导性,因为它忽略了广泛的谱系特异性变异,这些变异使得某些细菌的药物结合位点与大肠杆菌的差异比大肠杆菌与人类的差异更大。这些发现将对核糖体靶向抗生素的谱系特异性使用产生许多影响,这些抗生素目前被视为细菌蛋白质合成的通用抑制剂。
COSMX™SMI和解码器探测器未提供和/或交付给德国联邦共和国,用于在德国联邦共和国中使用,用于检测细胞RNA,Messenger RNA,MicroRNA,MicroRNA,核糖体RNA及其任何组合的方法,用于在荧光中以荧光量的分析,以进行杂交的分析,以进行分析,以进行分析,以进行分析。 (哈佛大学)作为EP 2 794 928 B1的德国部分的所有者。未经哈佛大学(哈佛大学)的总统和研究员的同意,禁止检测细胞RNA,Messenger RNA,microRNA,核糖体RNA及其任何组合的用途。
标题 真核核糖体中药物结合残基的天然变异 作者 Lewis I. Chan 1,& 、Chinenye L. Ekemezie 1,& 、Karla Helena-Bueno 1 、Charlotte R. Brown 1 、Tom A. Williams 2,* Sergey V. Melnikov 1,* 附属机构 1 纽卡斯尔大学生物科学研究所,英国泰恩河畔纽卡斯尔,NE2 4HH 2 布里斯托尔大学生物科学学院,英国布里斯托尔,BS8 1TQ & 贡献相同 通讯 * 通讯地址:tom.a.williams@bristol.ac.uk 和 sergey.melnikov@newcastle.ac.uk 摘要 针对真核核糖体的药物作为研究工具和针对癌症、真菌和其他致病性的潜在疗法正变得越来越重要真核生物。然而,由于缺乏比较研究,我们目前不知道有多少真核生物拥有与人类相同的核糖体药物结合位点,以及有多少与人类有显著差异。目前,这种知识上的差距因真核生物基因组中存在假基因而加剧,由于我们无法区分真正的突变、假基因和测序伪影,使得这些比较分析具有挑战性。在本研究中,我们通过使用一种利用物种间进化关系的新方法解决了这个问题。使用这种方法,我们确定了 8,563 种代表性真核生物中 58 种核糖体药物结合残基的序列变体,追溯了这些变异的进化历史,从 20 亿年前真核生物的出现到它们随后分化成不同的谱系。出乎意料的是,我们发现酵母和人类(通常用作研究核糖体/药物相互作用的模型真核生物)与大多数其他真核生物不同,因为 rRNA 替换主要发生在动物和真菌中,但在大多数其他真核生物中不存在。此外,我们证明了以前在常见病原体利什曼原虫和疟原虫中发现的结构变异,这些变异被视为少数真核生物物种所特有的,但实际上为大量真核生物所共有。值得注意的是,一些真核生物谱系的核糖体药物结合位点与人类的差异比人类与细菌的差异更大。总体而言,我们的研究提供了真核生物核糖体药物结合位点进化的最完整概述(在单个物种、单个残基和单个药物的水平上),确定了与人类相比具有结构不同的核糖体药物结合位点的真核生物谱系。这些发现为利用核糖体靶向药物作为研究工具和开发针对真核寄生虫的谱系特异性抑制剂开辟了新的途径。
明尼苏达州卫生部(MDH)正在调查一群paraburkholderia真菌和Paraburkholderia物种,这些物种主要是环境和植物微生物,很少被确定为人类病原体。In August 2024, the MDH Public Health Laboratory (MDH-PHL) noted an increase in blood culture isolates submitted from clinical laboratories to rule out Burkholderia mallei and Burkholderia pseudomallei, that were subsequently identified as either Paraburkholderia fungorum or Paraburkholderia species using 16S ribosomal DNA sequencing by MDH-PHL.在2023年之前,真菌疟原虫于2011年在MDH-PHL上进行了鉴定。In October 2024, MDH PHL sent an MLS message asking clinical labs to look for cases during the previous 12 months: Minnesota Lab System Update: Minnesota Department of Health Investigating Paraburkholderia fungorum (www.health.state.mn.us/diseases/idlab/mls/labalerts/241001pfungorum.pdf) .
首先使用针对小亚基(SSU)核糖体RNA(rRNA)基因的多样性调查获得对“谁在那里”的了解后,这些微生物体经常被整体或较小的单位进行检查,以理解细胞的功能,与动物的性质,并最终对动物的影响,并洞察微生不动的角色<